在恒星器线圈设计中加入真空场能

S. Guinchard, S. R. Hudson, E. J. Paul
{"title":"在恒星器线圈设计中加入真空场能","authors":"S. Guinchard, S. R. Hudson, E. J. Paul","doi":"arxiv-2409.01268","DOIUrl":null,"url":null,"abstract":"Being ``three-dimensional'', stellarators have the advantage that plasma\ncurrents are not essential for creating rotational-transform; however, the\nexternal current-carrying coils in stellarators are usually not planar. Reducing the inter-coil electromagnetic forces acting on strongly shaped 3D\ncoils while preserving the favorable properties of the ``target'' magnetic\nfield is a design challenge. In this work, we recognize that the inter-coil ${\\mathbf j} \\times {\\mathbf\nB}$ forces are the gradient of the vacuum magnetic energy, $\\displaystyle E :=\n\\frac{1}{2\\mu_0}\\int_{R^3} \\!\\!\\! B^2 \\, dV$. We introduce an objective functional, ${\\cal F}\\equiv \\Phi_2 + \\omega E$,\nbuilt on the usual quadratic flux on a prescribed target surface,\n$\\displaystyle \\Phi_2 := \\frac{1}{2}\\int_{\\cal S} ( {\\mathbf B} \\cdot {\\mathbf\nn} )^2 \\, dS$, and the vacuum energy, where $\\omega$ is a weight penalty. The Euler-Lagrange equation for stationary states is derived, and numerical\nillustrations are computed using the SIMSOPT code \\cite{simsopt}.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Including the vacuum field energy in stellarator coil design\",\"authors\":\"S. Guinchard, S. R. Hudson, E. J. Paul\",\"doi\":\"arxiv-2409.01268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being ``three-dimensional'', stellarators have the advantage that plasma\\ncurrents are not essential for creating rotational-transform; however, the\\nexternal current-carrying coils in stellarators are usually not planar. Reducing the inter-coil electromagnetic forces acting on strongly shaped 3D\\ncoils while preserving the favorable properties of the ``target'' magnetic\\nfield is a design challenge. In this work, we recognize that the inter-coil ${\\\\mathbf j} \\\\times {\\\\mathbf\\nB}$ forces are the gradient of the vacuum magnetic energy, $\\\\displaystyle E :=\\n\\\\frac{1}{2\\\\mu_0}\\\\int_{R^3} \\\\!\\\\!\\\\! B^2 \\\\, dV$. We introduce an objective functional, ${\\\\cal F}\\\\equiv \\\\Phi_2 + \\\\omega E$,\\nbuilt on the usual quadratic flux on a prescribed target surface,\\n$\\\\displaystyle \\\\Phi_2 := \\\\frac{1}{2}\\\\int_{\\\\cal S} ( {\\\\mathbf B} \\\\cdot {\\\\mathbf\\nn} )^2 \\\\, dS$, and the vacuum energy, where $\\\\omega$ is a weight penalty. The Euler-Lagrange equation for stationary states is derived, and numerical\\nillustrations are computed using the SIMSOPT code \\\\cite{simsopt}.\",\"PeriodicalId\":501274,\"journal\":{\"name\":\"arXiv - PHYS - Plasma Physics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恒星仪是 "三维 "的,其优势在于等离子体电流对产生旋转转换并不重要;然而,恒星仪中的外部载流线圈通常不是平面的。在保持 "目标 "磁场的有利特性的同时,减少作用在强形状三维线圈上的线圈间电磁力是一项设计挑战。在这项工作中,我们认识到线圈间的${\mathbf j}\times {\mathbfB}$ 力是真空磁能的梯度,$\displaystyle E :=\frac{1}{2\mu_0}\int_{R^3}\!\!\!B^2 \, dV$.我们引入了一个目标函数,${cal F}\equiv \Phi_2 + \omega E$,它建立在规定目标表面上的通常二次通量上,$\displaystyle \Phi_2 := \frac{1}{2}\int_{\cal S}( {\mathbf B} \cdot {\mathbfn} )^2 \, dS$,以及真空能量,其中$\omega$是权重惩罚。推导出了静止态的欧拉-拉格朗日方程,并使用SIMSOPT代码(cite{simsopt})计算了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Including the vacuum field energy in stellarator coil design
Being ``three-dimensional'', stellarators have the advantage that plasma currents are not essential for creating rotational-transform; however, the external current-carrying coils in stellarators are usually not planar. Reducing the inter-coil electromagnetic forces acting on strongly shaped 3D coils while preserving the favorable properties of the ``target'' magnetic field is a design challenge. In this work, we recognize that the inter-coil ${\mathbf j} \times {\mathbf B}$ forces are the gradient of the vacuum magnetic energy, $\displaystyle E := \frac{1}{2\mu_0}\int_{R^3} \!\!\! B^2 \, dV$. We introduce an objective functional, ${\cal F}\equiv \Phi_2 + \omega E$, built on the usual quadratic flux on a prescribed target surface, $\displaystyle \Phi_2 := \frac{1}{2}\int_{\cal S} ( {\mathbf B} \cdot {\mathbf n} )^2 \, dS$, and the vacuum energy, where $\omega$ is a weight penalty. The Euler-Lagrange equation for stationary states is derived, and numerical illustrations are computed using the SIMSOPT code \cite{simsopt}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信