非均质性对三波参量不稳定性影响的理论研究:WKBJ 方法

Taotao Zhou, Nong Xiang, Chunyun Gan, Tianyang Xia
{"title":"非均质性对三波参量不稳定性影响的理论研究:WKBJ 方法","authors":"Taotao Zhou, Nong Xiang, Chunyun Gan, Tianyang Xia","doi":"arxiv-2409.06677","DOIUrl":null,"url":null,"abstract":"The mechanisms by which media inhomogeneity affects the three wave parametric\ninstability (PI), including the wave number mismatch and the parameter\ngradients, are investigated using an approach based on the\nWentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation. This approach\ntransforms the coupling wave equations into an amplitude equation and\niteratively solves its characteristic polynomials. By analyzing the solutions,\nwe proposed that the wave number of the quasi-mode, a key term in the wave\nnumber mismatch of non-resonant type PI, should be a complex root of the\nquasi-mode's linear dispersion equation. Based on this, we derive a unified\namplification factor formula that covers the resonant and non-resonant, the\nforward-scattered and backward-scattered types of PI. The impact of parameter\ngradients on the local spatial growth rate becomes significant when the\ninhomogeneity exceeds 10^{-3}. Considering parameter gradients extends our\napproach's validity to an inhomogeneity of about 10^{-2}. This approach holds\npromise for more specific PI modeling in the future.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of Inhomogeneity Effects on Three-Wave Parametric Instability: A WKBJ Approach\",\"authors\":\"Taotao Zhou, Nong Xiang, Chunyun Gan, Tianyang Xia\",\"doi\":\"arxiv-2409.06677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanisms by which media inhomogeneity affects the three wave parametric\\ninstability (PI), including the wave number mismatch and the parameter\\ngradients, are investigated using an approach based on the\\nWentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation. This approach\\ntransforms the coupling wave equations into an amplitude equation and\\niteratively solves its characteristic polynomials. By analyzing the solutions,\\nwe proposed that the wave number of the quasi-mode, a key term in the wave\\nnumber mismatch of non-resonant type PI, should be a complex root of the\\nquasi-mode's linear dispersion equation. Based on this, we derive a unified\\namplification factor formula that covers the resonant and non-resonant, the\\nforward-scattered and backward-scattered types of PI. The impact of parameter\\ngradients on the local spatial growth rate becomes significant when the\\ninhomogeneity exceeds 10^{-3}. Considering parameter gradients extends our\\napproach's validity to an inhomogeneity of about 10^{-2}. This approach holds\\npromise for more specific PI modeling in the future.\",\"PeriodicalId\":501274,\"journal\":{\"name\":\"arXiv - PHYS - Plasma Physics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用基于文采尔-克拉默-布里渊-杰弗里斯(WKBJ)近似的方法,研究了介质不均匀性影响三波参数不稳定性(PI)的机制,包括波数失配和参数梯度。这种方法将耦合波方程转换为振幅方程,并对其特征多项式进行迭代求解。通过分析求解结果,我们提出了准模式的波数(非共振型 PI 波数失配的关键项)应为准模式线性色散方程的复根。在此基础上,我们推导出了一个统一的放大系数公式,它涵盖了共振型和非共振型、前向散射型和后向散射型 PI。当同质性超过 10^{-3} 时,参数梯度对局部空间增长率的影响就变得非常显著。考虑参数梯度可以将我们方法的有效性扩展到约 10^{-2} 的不均匀性。这种方法有望在未来用于更具体的 PI 建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Study of Inhomogeneity Effects on Three-Wave Parametric Instability: A WKBJ Approach
The mechanisms by which media inhomogeneity affects the three wave parametric instability (PI), including the wave number mismatch and the parameter gradients, are investigated using an approach based on the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation. This approach transforms the coupling wave equations into an amplitude equation and iteratively solves its characteristic polynomials. By analyzing the solutions, we proposed that the wave number of the quasi-mode, a key term in the wave number mismatch of non-resonant type PI, should be a complex root of the quasi-mode's linear dispersion equation. Based on this, we derive a unified amplification factor formula that covers the resonant and non-resonant, the forward-scattered and backward-scattered types of PI. The impact of parameter gradients on the local spatial growth rate becomes significant when the inhomogeneity exceeds 10^{-3}. Considering parameter gradients extends our approach's validity to an inhomogeneity of about 10^{-2}. This approach holds promise for more specific PI modeling in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信