三角形上的片断收缩映射

Samuel Everett
{"title":"三角形上的片断收缩映射","authors":"Samuel Everett","doi":"arxiv-2408.16019","DOIUrl":null,"url":null,"abstract":"We study the dynamics of a piecewise map defined on the set of three pairwise\nnonparallel, nonconcurrent lines in $\\mathbb{R}^2$. The geometric map of study\nmay be analogized to the billiard map with a different reflection rule so that\neach iteration is a contraction over the space, thereby providing asymptotic\nbehavior of interest. Our study emphasizes the behavior of periodic orbits\ngenerated by the map, with description of their geometry and bifurcation\nbehavior. We establish that for any initial point in the space, the orbit will\nconverge to a fixed point or periodic orbit, and we demonstrate that there\nexists an infinite variety of periodic orbits the orbits may converge to,\ndependent on the parameters of the underlying space.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A piecewise contractive map on triangles\",\"authors\":\"Samuel Everett\",\"doi\":\"arxiv-2408.16019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics of a piecewise map defined on the set of three pairwise\\nnonparallel, nonconcurrent lines in $\\\\mathbb{R}^2$. The geometric map of study\\nmay be analogized to the billiard map with a different reflection rule so that\\neach iteration is a contraction over the space, thereby providing asymptotic\\nbehavior of interest. Our study emphasizes the behavior of periodic orbits\\ngenerated by the map, with description of their geometry and bifurcation\\nbehavior. We establish that for any initial point in the space, the orbit will\\nconverge to a fixed point or periodic orbit, and we demonstrate that there\\nexists an infinite variety of periodic orbits the orbits may converge to,\\ndependent on the parameters of the underlying space.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是定义在 $\mathbb{R}^2$ 中三条平行、非并行线的对偶线集合上的片断映射的动力学。所研究的几何映射可类比于台球映射,其反射规则不同,因此每次迭代都是对空间的收缩,从而提供了感兴趣的渐近行为。我们的研究强调了由台球图产生的周期轨道的行为,并描述了它们的几何和分岔行为。我们确定,对于空间中的任何初始点,轨道都将收敛到一个固定点或周期轨道,而且我们证明,轨道可能收敛到的周期轨道存在无限种,这取决于底层空间的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A piecewise contractive map on triangles
We study the dynamics of a piecewise map defined on the set of three pairwise nonparallel, nonconcurrent lines in $\mathbb{R}^2$. The geometric map of study may be analogized to the billiard map with a different reflection rule so that each iteration is a contraction over the space, thereby providing asymptotic behavior of interest. Our study emphasizes the behavior of periodic orbits generated by the map, with description of their geometry and bifurcation behavior. We establish that for any initial point in the space, the orbit will converge to a fixed point or periodic orbit, and we demonstrate that there exists an infinite variety of periodic orbits the orbits may converge to, dependent on the parameters of the underlying space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信