{"title":"3度波恩卡莱中心问题的新解","authors":"Hans-Christian von Bothmer","doi":"arxiv-2409.01751","DOIUrl":null,"url":null,"abstract":"Let $\\omega$ be a plane autonomous system and C its configuration of\nalgebraic integral curves. If the singularities of C are quasi homogeneous we\ngive new conditions for existence of a Darboux integrating factor or a Darboux\nfirst integral. This is used to construct new components of the center variety\nin degree 3.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New solutions of the Poincaré Center Problem in degree 3\",\"authors\":\"Hans-Christian von Bothmer\",\"doi\":\"arxiv-2409.01751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\omega$ be a plane autonomous system and C its configuration of\\nalgebraic integral curves. If the singularities of C are quasi homogeneous we\\ngive new conditions for existence of a Darboux integrating factor or a Darboux\\nfirst integral. This is used to construct new components of the center variety\\nin degree 3.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 $\omega$ 是一个平面自治系统,C 是其代数积分曲线的配置。如果 C 的奇点是准均质的,我们就给出了达尔布积分因子或达尔布第一积分存在的新条件。这将用于构造 3 度中心变的新分量。
New solutions of the Poincaré Center Problem in degree 3
Let $\omega$ be a plane autonomous system and C its configuration of
algebraic integral curves. If the singularities of C are quasi homogeneous we
give new conditions for existence of a Darboux integrating factor or a Darboux
first integral. This is used to construct new components of the center variety
in degree 3.