反)全态对应的共形测量

Nils Hemmingsson, Xiaoran Li, Zhiqiang Li
{"title":"反)全态对应的共形测量","authors":"Nils Hemmingsson, Xiaoran Li, Zhiqiang Li","doi":"arxiv-2409.01361","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and properties of conformal measures on\nlimit sets of (anti)holomorphic correspondences. We show that if the critical\nexponent satisfies $1\\leq \\delta_{\\operatorname{crit}}(x) <+\\infty,$ the\ncorrespondence $F$ is (relatively) hyperbolic on the limit set $\\Lambda_+(x)$,\nand $\\Lambda_+(x)$ is minimal, then $\\Lambda_+(x)$ admits a non-atomic\nconformal measure for $F$ and the Hausdorff dimension of $\\Lambda_+(x)$ is\nstrictly less than 2. As a special case, this shows that for a parameter $a$ in\nthe interior of a hyperbolic component of the modular Mandelbrot set, the limit\nset of the Bullett--Penrose correspondence $F_a$ has a non-atomic conformal\nmeasure and its Hausdorff dimension is strictly less than 2. The same results\nhold for the LLMM correspondences, under some extra assumptions on its defining\nfunction $f$.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal measures of (anti)holomorphic correspondences\",\"authors\":\"Nils Hemmingsson, Xiaoran Li, Zhiqiang Li\",\"doi\":\"arxiv-2409.01361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence and properties of conformal measures on\\nlimit sets of (anti)holomorphic correspondences. We show that if the critical\\nexponent satisfies $1\\\\leq \\\\delta_{\\\\operatorname{crit}}(x) <+\\\\infty,$ the\\ncorrespondence $F$ is (relatively) hyperbolic on the limit set $\\\\Lambda_+(x)$,\\nand $\\\\Lambda_+(x)$ is minimal, then $\\\\Lambda_+(x)$ admits a non-atomic\\nconformal measure for $F$ and the Hausdorff dimension of $\\\\Lambda_+(x)$ is\\nstrictly less than 2. As a special case, this shows that for a parameter $a$ in\\nthe interior of a hyperbolic component of the modular Mandelbrot set, the limit\\nset of the Bullett--Penrose correspondence $F_a$ has a non-atomic conformal\\nmeasure and its Hausdorff dimension is strictly less than 2. The same results\\nhold for the LLMM correspondences, under some extra assumptions on its defining\\nfunction $f$.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了(反)全态对应的极限集上保角量度的存在性和性质。我们证明,如果临界分量满足$1\leq \delta_\operatorname{crit}}(x) <\+infty, $F$在极限集$\Lambda_+(x)$上是(相对)双曲的、并且 $\Lambda_+(x)$ 是最小的,那么 $\Lambda_+(x)$ 允许 $F$ 的非原子共形度量,并且 $\Lambda_+(x)$ 的 Hausdorff 维度严格小于 2。作为特例,这表明对于模态曼德尔布罗特集双曲分量内部的参数 $a$,Bullett--Penrose 对应的极限集 $F_a$ 具有非原子共形度量,且其 Hausdorff 维度严格小于 2。在其定义函数 $f$ 的一些额外假设下,LLMM 对应也有同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal measures of (anti)holomorphic correspondences
In this paper, we study the existence and properties of conformal measures on limit sets of (anti)holomorphic correspondences. We show that if the critical exponent satisfies $1\leq \delta_{\operatorname{crit}}(x) <+\infty,$ the correspondence $F$ is (relatively) hyperbolic on the limit set $\Lambda_+(x)$, and $\Lambda_+(x)$ is minimal, then $\Lambda_+(x)$ admits a non-atomic conformal measure for $F$ and the Hausdorff dimension of $\Lambda_+(x)$ is strictly less than 2. As a special case, this shows that for a parameter $a$ in the interior of a hyperbolic component of the modular Mandelbrot set, the limit set of the Bullett--Penrose correspondence $F_a$ has a non-atomic conformal measure and its Hausdorff dimension is strictly less than 2. The same results hold for the LLMM correspondences, under some extra assumptions on its defining function $f$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信