戴克平移和异相贝克图的周期点分布

Hiroki Takahasi
{"title":"戴克平移和异相贝克图的周期点分布","authors":"Hiroki Takahasi","doi":"arxiv-2409.01261","DOIUrl":null,"url":null,"abstract":"The heterochaos baker maps are piecewise affine maps on the square or the\ncube that are one of the simplest partially hyperbolic systems. The Dyck shift\nis a well-known example of a subshift that has two fully supported ergodic\nmeasures of maximal entropy (MMEs). We show that the two ergodic MMEs of the\nDyck shift are represented as asymptotic distributions of sets of periodic\npoints of different multipliers. We transfer this result to the heterochaos\nbaker maps, and show that their two ergodic MMEs are represented as asymptotic\ndistributions of sets of periodic points of different unstable dimensions.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions of periodic points for the Dyck shift and the heterochaos baker maps\",\"authors\":\"Hiroki Takahasi\",\"doi\":\"arxiv-2409.01261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heterochaos baker maps are piecewise affine maps on the square or the\\ncube that are one of the simplest partially hyperbolic systems. The Dyck shift\\nis a well-known example of a subshift that has two fully supported ergodic\\nmeasures of maximal entropy (MMEs). We show that the two ergodic MMEs of the\\nDyck shift are represented as asymptotic distributions of sets of periodic\\npoints of different multipliers. We transfer this result to the heterochaos\\nbaker maps, and show that their two ergodic MMEs are represented as asymptotic\\ndistributions of sets of periodic points of different unstable dimensions.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异相贝克映射是正方形或立方体上的片断仿射映射,是最简单的部分双曲系统之一。戴克平移是一个著名的子平移例子,它有两个完全支持的最大熵的遍历度量(MMEs)。我们证明,戴克平移的两个遍历最大熵(MME)表现为不同乘数的周期点集合的渐近分布。我们将这一结果转移到异相贝克映射,并证明它们的两个遍历最大熵(MME)表示为不同不稳定维数的周期点集的渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributions of periodic points for the Dyck shift and the heterochaos baker maps
The heterochaos baker maps are piecewise affine maps on the square or the cube that are one of the simplest partially hyperbolic systems. The Dyck shift is a well-known example of a subshift that has two fully supported ergodic measures of maximal entropy (MMEs). We show that the two ergodic MMEs of the Dyck shift are represented as asymptotic distributions of sets of periodic points of different multipliers. We transfer this result to the heterochaos baker maps, and show that their two ergodic MMEs are represented as asymptotic distributions of sets of periodic points of different unstable dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信