广义瓦拉几空间上的利玛窦曲率和归一化利玛窦流

Nurlan Abiev
{"title":"广义瓦拉几空间上的利玛窦曲率和归一化利玛窦流","authors":"Nurlan Abiev","doi":"arxiv-2409.02570","DOIUrl":null,"url":null,"abstract":"We proved that the normalized Ricci flow does not preserve the positivity of\nRicci curvature of Riemannian metrics on every generalized Wallach space with\n$a_1+a_2+a_3\\le 1/2$, in particular on the spaces\n$\\operatorname{SU}(k+l+m)/\\operatorname{SU}(k)\\times \\operatorname{SU}(l)\n\\times \\operatorname{SU}(m)$ and\n$\\operatorname{Sp}(k+l+m)/\\operatorname{Sp}(k)\\times \\operatorname{Sp}(l)\n\\times \\operatorname{Sp}(m)$ independently on $k,l$ and $m$. The positivity of\nRicci curvature is preserved for all original metrics with\n$\\operatorname{Ric}>0$ on generalized Wallach spaces $a_1+a_2+a_3> 1/2$ if the\nconditions $4\\left(a_j+a_k\\right)^2\\ge (1-2a_i)(1+2a_i)^{-1}$ hold for all\n$\\{i,j,k\\}=\\{1,2,3\\}$. We also established that the spaces\n$\\operatorname{SO}(k+l+m)/\\operatorname{SO}(k)\\times \\operatorname{SO}(l)\\times\n\\operatorname{SO}(m)$ satisfy the above conditions for $\\max\\{k,l,m\\}\\le 11$,\nmoreover, additional conditions were found to keep $\\operatorname{Ric}>0$ in\ncases when $\\max\\{k,l,m\\}\\le 11$ is violated. Similar questions have also been\nstudied for all other generalized Wallach spaces given in the classification of\nYuri\\u\\i\\ Nikonorov.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ricci curvature and normalized Ricci flow on generalized Wallach spaces\",\"authors\":\"Nurlan Abiev\",\"doi\":\"arxiv-2409.02570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proved that the normalized Ricci flow does not preserve the positivity of\\nRicci curvature of Riemannian metrics on every generalized Wallach space with\\n$a_1+a_2+a_3\\\\le 1/2$, in particular on the spaces\\n$\\\\operatorname{SU}(k+l+m)/\\\\operatorname{SU}(k)\\\\times \\\\operatorname{SU}(l)\\n\\\\times \\\\operatorname{SU}(m)$ and\\n$\\\\operatorname{Sp}(k+l+m)/\\\\operatorname{Sp}(k)\\\\times \\\\operatorname{Sp}(l)\\n\\\\times \\\\operatorname{Sp}(m)$ independently on $k,l$ and $m$. The positivity of\\nRicci curvature is preserved for all original metrics with\\n$\\\\operatorname{Ric}>0$ on generalized Wallach spaces $a_1+a_2+a_3> 1/2$ if the\\nconditions $4\\\\left(a_j+a_k\\\\right)^2\\\\ge (1-2a_i)(1+2a_i)^{-1}$ hold for all\\n$\\\\{i,j,k\\\\}=\\\\{1,2,3\\\\}$. We also established that the spaces\\n$\\\\operatorname{SO}(k+l+m)/\\\\operatorname{SO}(k)\\\\times \\\\operatorname{SO}(l)\\\\times\\n\\\\operatorname{SO}(m)$ satisfy the above conditions for $\\\\max\\\\{k,l,m\\\\}\\\\le 11$,\\nmoreover, additional conditions were found to keep $\\\\operatorname{Ric}>0$ in\\ncases when $\\\\max\\\\{k,l,m\\\\}\\\\le 11$ is violated. Similar questions have also been\\nstudied for all other generalized Wallach spaces given in the classification of\\nYuri\\\\u\\\\i\\\\ Nikonorov.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了归一化里奇流在每一个具有$a_1+a_2+a_3le 1/2$的广义瓦拉几空间上都不保留黎曼度量的里奇曲率的正向性、和$operatorname{Sp}(k+l+m)/operatorname{Sp}(k)/times (operatorname{Sp}(l)/times (operatorname{Sp}(m))$ 空间上的里奇曲率正向性、l$ 和 $m$。如果条件 $4\left(a_j+a_k\right)^2\ge (1-2a_i)(1+2a_i)^{-1}$ 对所有$\{i,j,k\}=\{1,2,3\}$成立,那么在广义瓦拉几空间$a_1+a_2+a_3> 1/2$上,对于所有具有$\operatorname{Ric}>0$的原始度量,里奇曲率的正向性是保留的。我们还确定了空间$operatorname{SO}(k+l+m)/(operatorname{SO}(k))/times (operatorname{SO}(l))/times (operatorname{SO}(m))$在 $\max\{k,l,m}\le 11$时满足上述条件,此外,当 $\max\{k,l,m}\le 11$被违反时,我们还发现了保持 $\operatorname{Ric}>0$ 的附加条件。对于尼科诺罗夫分类中给出的所有其他广义瓦拉几空间,类似的问题也被研究过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ricci curvature and normalized Ricci flow on generalized Wallach spaces
We proved that the normalized Ricci flow does not preserve the positivity of Ricci curvature of Riemannian metrics on every generalized Wallach space with $a_1+a_2+a_3\le 1/2$, in particular on the spaces $\operatorname{SU}(k+l+m)/\operatorname{SU}(k)\times \operatorname{SU}(l) \times \operatorname{SU}(m)$ and $\operatorname{Sp}(k+l+m)/\operatorname{Sp}(k)\times \operatorname{Sp}(l) \times \operatorname{Sp}(m)$ independently on $k,l$ and $m$. The positivity of Ricci curvature is preserved for all original metrics with $\operatorname{Ric}>0$ on generalized Wallach spaces $a_1+a_2+a_3> 1/2$ if the conditions $4\left(a_j+a_k\right)^2\ge (1-2a_i)(1+2a_i)^{-1}$ hold for all $\{i,j,k\}=\{1,2,3\}$. We also established that the spaces $\operatorname{SO}(k+l+m)/\operatorname{SO}(k)\times \operatorname{SO}(l)\times \operatorname{SO}(m)$ satisfy the above conditions for $\max\{k,l,m\}\le 11$, moreover, additional conditions were found to keep $\operatorname{Ric}>0$ in cases when $\max\{k,l,m\}\le 11$ is violated. Similar questions have also been studied for all other generalized Wallach spaces given in the classification of Yuri\u\i\ Nikonorov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信