{"title":"广义瓦拉几空间上的利玛窦曲率和归一化利玛窦流","authors":"Nurlan Abiev","doi":"arxiv-2409.02570","DOIUrl":null,"url":null,"abstract":"We proved that the normalized Ricci flow does not preserve the positivity of\nRicci curvature of Riemannian metrics on every generalized Wallach space with\n$a_1+a_2+a_3\\le 1/2$, in particular on the spaces\n$\\operatorname{SU}(k+l+m)/\\operatorname{SU}(k)\\times \\operatorname{SU}(l)\n\\times \\operatorname{SU}(m)$ and\n$\\operatorname{Sp}(k+l+m)/\\operatorname{Sp}(k)\\times \\operatorname{Sp}(l)\n\\times \\operatorname{Sp}(m)$ independently on $k,l$ and $m$. The positivity of\nRicci curvature is preserved for all original metrics with\n$\\operatorname{Ric}>0$ on generalized Wallach spaces $a_1+a_2+a_3> 1/2$ if the\nconditions $4\\left(a_j+a_k\\right)^2\\ge (1-2a_i)(1+2a_i)^{-1}$ hold for all\n$\\{i,j,k\\}=\\{1,2,3\\}$. We also established that the spaces\n$\\operatorname{SO}(k+l+m)/\\operatorname{SO}(k)\\times \\operatorname{SO}(l)\\times\n\\operatorname{SO}(m)$ satisfy the above conditions for $\\max\\{k,l,m\\}\\le 11$,\nmoreover, additional conditions were found to keep $\\operatorname{Ric}>0$ in\ncases when $\\max\\{k,l,m\\}\\le 11$ is violated. Similar questions have also been\nstudied for all other generalized Wallach spaces given in the classification of\nYuri\\u\\i\\ Nikonorov.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ricci curvature and normalized Ricci flow on generalized Wallach spaces\",\"authors\":\"Nurlan Abiev\",\"doi\":\"arxiv-2409.02570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proved that the normalized Ricci flow does not preserve the positivity of\\nRicci curvature of Riemannian metrics on every generalized Wallach space with\\n$a_1+a_2+a_3\\\\le 1/2$, in particular on the spaces\\n$\\\\operatorname{SU}(k+l+m)/\\\\operatorname{SU}(k)\\\\times \\\\operatorname{SU}(l)\\n\\\\times \\\\operatorname{SU}(m)$ and\\n$\\\\operatorname{Sp}(k+l+m)/\\\\operatorname{Sp}(k)\\\\times \\\\operatorname{Sp}(l)\\n\\\\times \\\\operatorname{Sp}(m)$ independently on $k,l$ and $m$. The positivity of\\nRicci curvature is preserved for all original metrics with\\n$\\\\operatorname{Ric}>0$ on generalized Wallach spaces $a_1+a_2+a_3> 1/2$ if the\\nconditions $4\\\\left(a_j+a_k\\\\right)^2\\\\ge (1-2a_i)(1+2a_i)^{-1}$ hold for all\\n$\\\\{i,j,k\\\\}=\\\\{1,2,3\\\\}$. We also established that the spaces\\n$\\\\operatorname{SO}(k+l+m)/\\\\operatorname{SO}(k)\\\\times \\\\operatorname{SO}(l)\\\\times\\n\\\\operatorname{SO}(m)$ satisfy the above conditions for $\\\\max\\\\{k,l,m\\\\}\\\\le 11$,\\nmoreover, additional conditions were found to keep $\\\\operatorname{Ric}>0$ in\\ncases when $\\\\max\\\\{k,l,m\\\\}\\\\le 11$ is violated. Similar questions have also been\\nstudied for all other generalized Wallach spaces given in the classification of\\nYuri\\\\u\\\\i\\\\ Nikonorov.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ricci curvature and normalized Ricci flow on generalized Wallach spaces
We proved that the normalized Ricci flow does not preserve the positivity of
Ricci curvature of Riemannian metrics on every generalized Wallach space with
$a_1+a_2+a_3\le 1/2$, in particular on the spaces
$\operatorname{SU}(k+l+m)/\operatorname{SU}(k)\times \operatorname{SU}(l)
\times \operatorname{SU}(m)$ and
$\operatorname{Sp}(k+l+m)/\operatorname{Sp}(k)\times \operatorname{Sp}(l)
\times \operatorname{Sp}(m)$ independently on $k,l$ and $m$. The positivity of
Ricci curvature is preserved for all original metrics with
$\operatorname{Ric}>0$ on generalized Wallach spaces $a_1+a_2+a_3> 1/2$ if the
conditions $4\left(a_j+a_k\right)^2\ge (1-2a_i)(1+2a_i)^{-1}$ hold for all
$\{i,j,k\}=\{1,2,3\}$. We also established that the spaces
$\operatorname{SO}(k+l+m)/\operatorname{SO}(k)\times \operatorname{SO}(l)\times
\operatorname{SO}(m)$ satisfy the above conditions for $\max\{k,l,m\}\le 11$,
moreover, additional conditions were found to keep $\operatorname{Ric}>0$ in
cases when $\max\{k,l,m\}\le 11$ is violated. Similar questions have also been
studied for all other generalized Wallach spaces given in the classification of
Yuri\u\i\ Nikonorov.