斯威夫特-霍恩伯格方程中周期轨道的延续和分岔以及符号动力学

Jakub Czwórnóg, Daniel Wilczak
{"title":"斯威夫特-霍恩伯格方程中周期轨道的延续和分岔以及符号动力学","authors":"Jakub Czwórnóg, Daniel Wilczak","doi":"arxiv-2409.03036","DOIUrl":null,"url":null,"abstract":"Steady states of the Swift--Hohenberg equation are studied. For the\nassociated four--dimensional ODE we prove that on the energy level $E=0$ two\nsmooth branches of even periodic solutions are created through the saddle-node\nbifurcation. We also show that these orbits satisfy certain geometric\nproperties, which implies that the system has positive topological entropy for\nan explicit and wide range of parameter values of the system. The proof is computer-assisted and it uses rigorous computation of bounds on\ncertain Poincar\\'e map and its higher order derivatives.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuation and bifurcations of periodic orbits and symbolic dynamics in the Swift-Hohenberg equation\",\"authors\":\"Jakub Czwórnóg, Daniel Wilczak\",\"doi\":\"arxiv-2409.03036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steady states of the Swift--Hohenberg equation are studied. For the\\nassociated four--dimensional ODE we prove that on the energy level $E=0$ two\\nsmooth branches of even periodic solutions are created through the saddle-node\\nbifurcation. We also show that these orbits satisfy certain geometric\\nproperties, which implies that the system has positive topological entropy for\\nan explicit and wide range of parameter values of the system. The proof is computer-assisted and it uses rigorous computation of bounds on\\ncertain Poincar\\\\'e map and its higher order derivatives.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了斯威夫特-霍恩伯格方程的稳态。对于相关的四维 ODE,我们证明了在能级 $E=0$ 上,通过鞍节点分岔产生了偶数周期解的两个光滑分支。我们还证明了这些轨道满足某些几何特性,这意味着该系统在明确而广泛的参数值范围内具有正拓扑熵。证明是在计算机辅助下进行的,它使用了对某些 Poincar\'e 映射及其高阶导数的边界的严格计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuation and bifurcations of periodic orbits and symbolic dynamics in the Swift-Hohenberg equation
Steady states of the Swift--Hohenberg equation are studied. For the associated four--dimensional ODE we prove that on the energy level $E=0$ two smooth branches of even periodic solutions are created through the saddle-node bifurcation. We also show that these orbits satisfy certain geometric properties, which implies that the system has positive topological entropy for an explicit and wide range of parameter values of the system. The proof is computer-assisted and it uses rigorous computation of bounds on certain Poincar\'e map and its higher order derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信