有趣的 3$ 一阶递推系统

Francesco Calogero
{"title":"有趣的 3$ 一阶递推系统","authors":"Francesco Calogero","doi":"arxiv-2409.05074","DOIUrl":null,"url":null,"abstract":"In this paper we firstly review how to \\textit{explicitly} solve a system of\n$3$ \\textit{first-order linear recursions }and outline the main properties of\nthese solutions. Next, via a change of variables, we identify a class of\nsystems of $3$ \\textit{first-order nonlinear recursions} which also are\n\\textit{explicitly solvable}. These systems might be of interest for\npractitioners in \\textit{applied} sciences: they allow a complete display of\ntheir solutions, which may feature interesting behaviors, for instance be\n\\textit{completely periodic} (\"isochronous systems\", if the independent\nvariable $n=0,1,2,3...$is considered a \\textit{ticking time}), or feature this\nproperty \\textit{only asymptotically} (as\\textit{\\ }$n\\rightarrow \\infty $).","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interesting system of $3$ first-order recursions\",\"authors\":\"Francesco Calogero\",\"doi\":\"arxiv-2409.05074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we firstly review how to \\\\textit{explicitly} solve a system of\\n$3$ \\\\textit{first-order linear recursions }and outline the main properties of\\nthese solutions. Next, via a change of variables, we identify a class of\\nsystems of $3$ \\\\textit{first-order nonlinear recursions} which also are\\n\\\\textit{explicitly solvable}. These systems might be of interest for\\npractitioners in \\\\textit{applied} sciences: they allow a complete display of\\ntheir solutions, which may feature interesting behaviors, for instance be\\n\\\\textit{completely periodic} (\\\"isochronous systems\\\", if the independent\\nvariable $n=0,1,2,3...$is considered a \\\\textit{ticking time}), or feature this\\nproperty \\\\textit{only asymptotically} (as\\\\textit{\\\\ }$n\\\\rightarrow \\\\infty $).\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先回顾了如何(textit{explicitly})求解$3 \textit{first-order linear recursions }系统,并概述了这些解的主要性质。接下来,通过变量的变化,我们确定了一类 3 元 (textit{一阶非线性递推}的系统,它们也是 (textit{显式}可解的。这些系统可能会引起应用科学工作者的兴趣:它们允许完整地显示其解,这些解可能具有有趣的行为,例如是("等周期系统",如果独立变量 $n=0,1,2,3。......$被认为是一个(textit{滴答时间}),或者具有这个特性(textit{only asymptotically})(as (textit{ }\$n\rightarrow \infty $)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interesting system of $3$ first-order recursions
In this paper we firstly review how to \textit{explicitly} solve a system of $3$ \textit{first-order linear recursions }and outline the main properties of these solutions. Next, via a change of variables, we identify a class of systems of $3$ \textit{first-order nonlinear recursions} which also are \textit{explicitly solvable}. These systems might be of interest for practitioners in \textit{applied} sciences: they allow a complete display of their solutions, which may feature interesting behaviors, for instance be \textit{completely periodic} ("isochronous systems", if the independent variable $n=0,1,2,3...$is considered a \textit{ticking time}), or feature this property \textit{only asymptotically} (as\textit{\ }$n\rightarrow \infty $).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信