带双平均的空间扰动椭圆受限三体问题的稳定性分析

Yan Luo, Kaicheng Sheng
{"title":"带双平均的空间扰动椭圆受限三体问题的稳定性分析","authors":"Yan Luo, Kaicheng Sheng","doi":"arxiv-2409.05299","DOIUrl":null,"url":null,"abstract":"This paper investigates the secular motion of a massless asteroid within the\nframework of the double-averaged elliptic restricted three-body problem. By\nemploying Poincar\\'e variables, we analyze the stability properties of asteroid\norbits in the presence of planetary perturbations. Our study reveals that\nperiodic orbits identified in the planar configuration maintain stability in\nthe spatial perturbed problem across a wide range of parameter values. These\nfindings, supported by numerical simulations, contribute to a deeper\nunderstanding of asteroid dynamics and have implications for studying\nexoplanetary systems with highly eccentric host stars.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of spatial perturbed elliptic restricted 3-body problem with double-averaging\",\"authors\":\"Yan Luo, Kaicheng Sheng\",\"doi\":\"arxiv-2409.05299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the secular motion of a massless asteroid within the\\nframework of the double-averaged elliptic restricted three-body problem. By\\nemploying Poincar\\\\'e variables, we analyze the stability properties of asteroid\\norbits in the presence of planetary perturbations. Our study reveals that\\nperiodic orbits identified in the planar configuration maintain stability in\\nthe spatial perturbed problem across a wide range of parameter values. These\\nfindings, supported by numerical simulations, contribute to a deeper\\nunderstanding of asteroid dynamics and have implications for studying\\nexoplanetary systems with highly eccentric host stars.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在双平均椭圆受限三体问题的框架内研究了无质量小行星的世俗运动。通过使用Poincar\'e 变量,我们分析了小行星轨道在行星扰动下的稳定性。我们的研究发现,在平面构型中确定的周期轨道在广泛的参数值范围内都能在空间扰动问题中保持稳定。这些发现得到了数值模拟的支持,有助于加深对小行星动力学的理解,并对研究具有高偏心主星的外行星系统具有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of spatial perturbed elliptic restricted 3-body problem with double-averaging
This paper investigates the secular motion of a massless asteroid within the framework of the double-averaged elliptic restricted three-body problem. By employing Poincar\'e variables, we analyze the stability properties of asteroid orbits in the presence of planetary perturbations. Our study reveals that periodic orbits identified in the planar configuration maintain stability in the spatial perturbed problem across a wide range of parameter values. These findings, supported by numerical simulations, contribute to a deeper understanding of asteroid dynamics and have implications for studying exoplanetary systems with highly eccentric host stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信