分数微分方程中的奇异吸引子:混沌与稳定性的拓扑方法

Ronald Katende
{"title":"分数微分方程中的奇异吸引子:混沌与稳定性的拓扑方法","authors":"Ronald Katende","doi":"arxiv-2409.05053","DOIUrl":null,"url":null,"abstract":"In this work, we explore the dynamics of fractional differential equations\n(FDEs) through a rigorous topological analysis of strange attractors. By\ninvestigating systems with Caputo derivatives of order \\( \\alpha \\in (0, 1) \\),\nwe identify conditions under which chaotic behavior emerges, characterized by\npositive topological entropy and the presence of homoclinic and heteroclinic\nstructures. We introduce novel methods for computing the fractional Conley\nindex and Lyapunov exponents, which allow us to distinguish between chaotic and\nnon-chaotic attractors. Our results also provide new insights into the fractal\nand spectral properties of strange attractors in fractional systems,\nestablishing a comprehensive framework for understanding chaos and stability in\nthis context.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strange Attractors in Fractional Differential Equations: A Topological Approach to Chaos and Stability\",\"authors\":\"Ronald Katende\",\"doi\":\"arxiv-2409.05053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore the dynamics of fractional differential equations\\n(FDEs) through a rigorous topological analysis of strange attractors. By\\ninvestigating systems with Caputo derivatives of order \\\\( \\\\alpha \\\\in (0, 1) \\\\),\\nwe identify conditions under which chaotic behavior emerges, characterized by\\npositive topological entropy and the presence of homoclinic and heteroclinic\\nstructures. We introduce novel methods for computing the fractional Conley\\nindex and Lyapunov exponents, which allow us to distinguish between chaotic and\\nnon-chaotic attractors. Our results also provide new insights into the fractal\\nand spectral properties of strange attractors in fractional systems,\\nestablishing a comprehensive framework for understanding chaos and stability in\\nthis context.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过对奇异吸引子进行严格的拓扑分析来探索分数微分方程(FDEs)的动力学。通过研究阶数为 \( \alpha \in (0, 1) \)的卡普托导数系统,我们确定了出现混沌行为的条件,这些条件的特征是拓扑熵为正以及存在同线性和异线性结构。我们引入了计算分数康利指数和李亚普诺夫指数的新方法,这使我们能够区分混沌吸引子和非混沌吸引子。我们的研究结果还为分形系统中奇异吸引子的分形和谱特性提供了新的见解,为在此背景下理解混沌和稳定性建立了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strange Attractors in Fractional Differential Equations: A Topological Approach to Chaos and Stability
In this work, we explore the dynamics of fractional differential equations (FDEs) through a rigorous topological analysis of strange attractors. By investigating systems with Caputo derivatives of order \( \alpha \in (0, 1) \), we identify conditions under which chaotic behavior emerges, characterized by positive topological entropy and the presence of homoclinic and heteroclinic structures. We introduce novel methods for computing the fractional Conley index and Lyapunov exponents, which allow us to distinguish between chaotic and non-chaotic attractors. Our results also provide new insights into the fractal and spectral properties of strange attractors in fractional systems, establishing a comprehensive framework for understanding chaos and stability in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信