{"title":"无交换性的多重递推","authors":"Wen Huang, Song Shao, Xiangdong Ye","doi":"arxiv-2409.07979","DOIUrl":null,"url":null,"abstract":"We study multiple recurrence without commutativity in this paper. We show\nthat for any two homeomorphisms $T,S: X\\rightarrow X$ with $(X,T)$ and $(X,S)$\nbeing minimal, there is a residual subset $X_0$ of $X$ such that for any $x\\in\nX_0$ and any nonlinear integral polynomials $p_1,\\ldots, p_d$ vanishing at $0$,\nthere is some subsequence $\\{n_i\\}$ of $\\mathbb Z$ with $n_i\\to \\infty$\nsatisfying $$ S^{n_i}x\\to x,\\ T^{p_1(n_i)}x\\to x, \\ldots,\\ T^{p_d(n_i)}x\\to x,\\\ni\\to\\infty.$$","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple recurrence without commutativity\",\"authors\":\"Wen Huang, Song Shao, Xiangdong Ye\",\"doi\":\"arxiv-2409.07979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study multiple recurrence without commutativity in this paper. We show\\nthat for any two homeomorphisms $T,S: X\\\\rightarrow X$ with $(X,T)$ and $(X,S)$\\nbeing minimal, there is a residual subset $X_0$ of $X$ such that for any $x\\\\in\\nX_0$ and any nonlinear integral polynomials $p_1,\\\\ldots, p_d$ vanishing at $0$,\\nthere is some subsequence $\\\\{n_i\\\\}$ of $\\\\mathbb Z$ with $n_i\\\\to \\\\infty$\\nsatisfying $$ S^{n_i}x\\\\to x,\\\\ T^{p_1(n_i)}x\\\\to x, \\\\ldots,\\\\ T^{p_d(n_i)}x\\\\to x,\\\\\\ni\\\\to\\\\infty.$$\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study multiple recurrence without commutativity in this paper. We show
that for any two homeomorphisms $T,S: X\rightarrow X$ with $(X,T)$ and $(X,S)$
being minimal, there is a residual subset $X_0$ of $X$ such that for any $x\in
X_0$ and any nonlinear integral polynomials $p_1,\ldots, p_d$ vanishing at $0$,
there is some subsequence $\{n_i\}$ of $\mathbb Z$ with $n_i\to \infty$
satisfying $$ S^{n_i}x\to x,\ T^{p_1(n_i)}x\to x, \ldots,\ T^{p_d(n_i)}x\to x,\
i\to\infty.$$