曼德勃罗集合中原始成分的斯特尔米外角

Benjamín A. Itzá-Ortiz, Mónica Moreno Rocha, Víctor Nopal-Coello
{"title":"曼德勃罗集合中原始成分的斯特尔米外角","authors":"Benjamín A. Itzá-Ortiz, Mónica Moreno Rocha, Víctor Nopal-Coello","doi":"arxiv-2409.07636","DOIUrl":null,"url":null,"abstract":"In this work we introduce the broken line construction, which is a geometric\nand combinatorial algorithm that computes periodic Sturmian angles of a given\nperiod, yielding the locations of their landing parameters in the Mandelbrot\nset. An easy to implement method to compute the conjugated angle of a periodic\nSturmian angle is also provided. Furthermore, if $\\theta$ is a periodic\nSturmian angle computed by the broken line construction, then we show the\nexistence of a one-to-one correspondence between its binary expansion and its\nassociated kneading sequence.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sturmian external angles of primitive components in the Mandelbrot set\",\"authors\":\"Benjamín A. Itzá-Ortiz, Mónica Moreno Rocha, Víctor Nopal-Coello\",\"doi\":\"arxiv-2409.07636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we introduce the broken line construction, which is a geometric\\nand combinatorial algorithm that computes periodic Sturmian angles of a given\\nperiod, yielding the locations of their landing parameters in the Mandelbrot\\nset. An easy to implement method to compute the conjugated angle of a periodic\\nSturmian angle is also provided. Furthermore, if $\\\\theta$ is a periodic\\nSturmian angle computed by the broken line construction, then we show the\\nexistence of a one-to-one correspondence between its binary expansion and its\\nassociated kneading sequence.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了断线构造,它是一种几何和组合算法,可以计算给定周期的周期性斯特尔米安角,并得出它们在曼德尔布罗兹集中的着陆参数位置。还提供了一种易于实现的方法来计算周期性斯图尔缅角的共轭角。此外,如果 $\theta$ 是通过断线构造计算出的周期性斯特角,那么我们证明了它的二进制展开和它的相关捏合序列之间存在一一对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sturmian external angles of primitive components in the Mandelbrot set
In this work we introduce the broken line construction, which is a geometric and combinatorial algorithm that computes periodic Sturmian angles of a given period, yielding the locations of their landing parameters in the Mandelbrot set. An easy to implement method to compute the conjugated angle of a periodic Sturmian angle is also provided. Furthermore, if $\theta$ is a periodic Sturmian angle computed by the broken line construction, then we show the existence of a one-to-one correspondence between its binary expansion and its associated kneading sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信