通过数值优化进行激光等离子加速器电子源设计的代用模型研究

G. Kane, P. Drobniak, S. Kazamias, V. Kubytskyi, M. Lenivenko, B. Lucas, J. Serhal, K. Cassou, A. Beck, A. Specka, F. Massimo
{"title":"通过数值优化进行激光等离子加速器电子源设计的代用模型研究","authors":"G. Kane, P. Drobniak, S. Kazamias, V. Kubytskyi, M. Lenivenko, B. Lucas, J. Serhal, K. Cassou, A. Beck, A. Specka, F. Massimo","doi":"arxiv-2408.15845","DOIUrl":null,"url":null,"abstract":"The optimisation of the plasma target design for high quality beam\nlaser-driven plasma injector electron source relies on numerical parametric\nstudies using Particle in Cell (PIC) codes. The common input parameters to\nexplore are laser characteristics and plasma density profiles extracted from\ncomputational fluid dynamic studies compatible with experimental measurements\nof target plasma density profiles. We demonstrate the construction of surrogate\nmodels using machine learning technique for a laser-plasma injector (LPI)\nelectron source based on more than 12000 simulations of a laser wakefield\nacceleration performed for sparsely spaced input parameters [1]. Surrogate\nmodels are very interesting for LPI design and optimisation because they are\nmuch faster than PIC simulations. We develop and compare the performance of\nthree surrogate models, namely, Gaussian processes (GP), multilayer perceptron\n(MLP), and decision trees (DT). We then use the best surrogate model to quickly\nfind optimal working points to get a selected electron beam energy, charge and\nenergy spread using different methods, namely random search, Bayesian\noptimisation and multi-objective Bayesian optimisation","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate Models studies for laser-plasma accelerator electron source design through numerical optimisation\",\"authors\":\"G. Kane, P. Drobniak, S. Kazamias, V. Kubytskyi, M. Lenivenko, B. Lucas, J. Serhal, K. Cassou, A. Beck, A. Specka, F. Massimo\",\"doi\":\"arxiv-2408.15845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimisation of the plasma target design for high quality beam\\nlaser-driven plasma injector electron source relies on numerical parametric\\nstudies using Particle in Cell (PIC) codes. The common input parameters to\\nexplore are laser characteristics and plasma density profiles extracted from\\ncomputational fluid dynamic studies compatible with experimental measurements\\nof target plasma density profiles. We demonstrate the construction of surrogate\\nmodels using machine learning technique for a laser-plasma injector (LPI)\\nelectron source based on more than 12000 simulations of a laser wakefield\\nacceleration performed for sparsely spaced input parameters [1]. Surrogate\\nmodels are very interesting for LPI design and optimisation because they are\\nmuch faster than PIC simulations. We develop and compare the performance of\\nthree surrogate models, namely, Gaussian processes (GP), multilayer perceptron\\n(MLP), and decision trees (DT). We then use the best surrogate model to quickly\\nfind optimal working points to get a selected electron beam energy, charge and\\nenergy spread using different methods, namely random search, Bayesian\\noptimisation and multi-objective Bayesian optimisation\",\"PeriodicalId\":501274,\"journal\":{\"name\":\"arXiv - PHYS - Plasma Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高质量光束激光驱动等离子体喷射器电子源的等离子体靶设计优化依赖于使用 "单元中的粒子"(PIC)代码进行的数值参数研究。要探索的常用输入参数是激光特性和从计算流体动力学研究中提取的等离子体密度剖面,这些参数与目标等离子体密度剖面的实验测量结果相兼容。我们展示了利用机器学习技术为激光等离子体喷射器(LPI)电子源构建的代理模型,该模型基于 12000 多次针对稀疏输入参数进行的激光唤醒加速模拟[1]。代理模型对 LPI 设计和优化非常有意义,因为它们比 PIC 仿真快得多。我们开发并比较了三种代理模型的性能,即高斯过程(GP)、多层感知器(MLP)和决策树(DT)。然后,我们使用最佳代用模型快速找到最佳工作点,并采用随机搜索、贝叶斯优化和多目标贝叶斯优化等不同方法获得选定的电子束能量、电荷和能量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surrogate Models studies for laser-plasma accelerator electron source design through numerical optimisation
The optimisation of the plasma target design for high quality beam laser-driven plasma injector electron source relies on numerical parametric studies using Particle in Cell (PIC) codes. The common input parameters to explore are laser characteristics and plasma density profiles extracted from computational fluid dynamic studies compatible with experimental measurements of target plasma density profiles. We demonstrate the construction of surrogate models using machine learning technique for a laser-plasma injector (LPI) electron source based on more than 12000 simulations of a laser wakefield acceleration performed for sparsely spaced input parameters [1]. Surrogate models are very interesting for LPI design and optimisation because they are much faster than PIC simulations. We develop and compare the performance of three surrogate models, namely, Gaussian processes (GP), multilayer perceptron (MLP), and decision trees (DT). We then use the best surrogate model to quickly find optimal working points to get a selected electron beam energy, charge and energy spread using different methods, namely random search, Bayesian optimisation and multi-objective Bayesian optimisation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信