Wen Wen, Shrey Grover, Douglas Hazel, Peyton Berning, Frederik Baumgardt, Vighnesh Viswanathan, Olivia Tween, Robert M. G. Reinhart
{"title":"贝塔波段神经变异揭示了人类工作记忆维持和删除过程中与年龄有关的差异","authors":"Wen Wen, Shrey Grover, Douglas Hazel, Peyton Berning, Frederik Baumgardt, Vighnesh Viswanathan, Olivia Tween, Robert M. G. Reinhart","doi":"10.1371/journal.pbio.3002784","DOIUrl":null,"url":null,"abstract":"Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions—information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":"42 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta-band neural variability reveals age-related dissociations in human working memory maintenance and deletion\",\"authors\":\"Wen Wen, Shrey Grover, Douglas Hazel, Peyton Berning, Frederik Baumgardt, Vighnesh Viswanathan, Olivia Tween, Robert M. G. Reinhart\",\"doi\":\"10.1371/journal.pbio.3002784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions—information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.\",\"PeriodicalId\":20240,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002784\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002784","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Beta-band neural variability reveals age-related dissociations in human working memory maintenance and deletion
Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions—information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.
期刊介绍:
PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly.
ISSN Numbers:
eISSN: 1545-7885
ISSN: 1544-9173