Scaler:高效和有效的横流分析

StevenJiaxun, Tang, Mingcan Xiang, Yang Wang, Bo Wu, Jianjun Chen, Tongping Liu
{"title":"Scaler:高效和有效的横流分析","authors":"StevenJiaxun, Tang, Mingcan Xiang, Yang Wang, Bo Wu, Jianjun Chen, Tongping Liu","doi":"arxiv-2409.00854","DOIUrl":null,"url":null,"abstract":"Performance analysis is challenging as different components (e.g.,different\nlibraries, and applications) of a complex system can interact with each other.\nHowever, few existing tools focus on understanding such interactions. To bridge\nthis gap, we propose a novel analysis method \"Cross Flow Analysis (XFA)\" that\nmonitors the interactions/flows across these components. We also built the\nScaler profiler that provides a holistic view of the time spent on each\ncomponent (e.g., library or application) and every API inside each component.\nThis paper proposes multiple new techniques, such as Universal Shadow Table,\nand Relation-Aware Data Folding. These techniques enable Scaler to achieve low\nruntime overhead, low memory overhead, and high profiling accuracy. Based on\nour extensive experimental results, Scaler detects multiple unknown performance\nissues inside widely-used applications, and therefore will be a useful\ncomplement to existing work. The reproduction package including the source code, benchmarks, and\nevaluation scripts, can be found at https://doi.org/10.5281/zenodo.13336658.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaler: Efficient and Effective Cross Flow Analysis\",\"authors\":\"StevenJiaxun, Tang, Mingcan Xiang, Yang Wang, Bo Wu, Jianjun Chen, Tongping Liu\",\"doi\":\"arxiv-2409.00854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance analysis is challenging as different components (e.g.,different\\nlibraries, and applications) of a complex system can interact with each other.\\nHowever, few existing tools focus on understanding such interactions. To bridge\\nthis gap, we propose a novel analysis method \\\"Cross Flow Analysis (XFA)\\\" that\\nmonitors the interactions/flows across these components. We also built the\\nScaler profiler that provides a holistic view of the time spent on each\\ncomponent (e.g., library or application) and every API inside each component.\\nThis paper proposes multiple new techniques, such as Universal Shadow Table,\\nand Relation-Aware Data Folding. These techniques enable Scaler to achieve low\\nruntime overhead, low memory overhead, and high profiling accuracy. Based on\\nour extensive experimental results, Scaler detects multiple unknown performance\\nissues inside widely-used applications, and therefore will be a useful\\ncomplement to existing work. The reproduction package including the source code, benchmarks, and\\nevaluation scripts, can be found at https://doi.org/10.5281/zenodo.13336658.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

性能分析具有挑战性,因为复杂系统的不同组件(例如不同的库和应用程序)之间会相互影响。为了弥补这一差距,我们提出了一种新型分析方法 "交叉流分析(XFA)",用于监控这些组件之间的交互/流。我们还构建了Scaler剖析器,该剖析器可提供每个组件(如库或应用程序)和每个组件内每个应用程序接口所用时间的整体视图。本文提出了多种新技术,如通用阴影表(Universal Shadow Table)和关系感知数据折叠(Relation-Aware Data Folding)。这些技术使 Scaler 能够实现低运行时间开销、低内存开销和高剖析精度。根据我们广泛的实验结果,Scaler 可以检测到广泛使用的应用程序中存在的多个未知性能问题,因此将成为现有工作的有益补充。包括源代码、基准测试和评估脚本在内的重现包可以在 https://doi.org/10.5281/zenodo.13336658 上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaler: Efficient and Effective Cross Flow Analysis
Performance analysis is challenging as different components (e.g.,different libraries, and applications) of a complex system can interact with each other. However, few existing tools focus on understanding such interactions. To bridge this gap, we propose a novel analysis method "Cross Flow Analysis (XFA)" that monitors the interactions/flows across these components. We also built the Scaler profiler that provides a holistic view of the time spent on each component (e.g., library or application) and every API inside each component. This paper proposes multiple new techniques, such as Universal Shadow Table, and Relation-Aware Data Folding. These techniques enable Scaler to achieve low runtime overhead, low memory overhead, and high profiling accuracy. Based on our extensive experimental results, Scaler detects multiple unknown performance issues inside widely-used applications, and therefore will be a useful complement to existing work. The reproduction package including the source code, benchmarks, and evaluation scripts, can be found at https://doi.org/10.5281/zenodo.13336658.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信