挑战可移植性范式:使用 SYCL 和 OpenCL 进行 FPGA 加速

Manuel de Castro, Francisco J. andújar, Roberto R. Osorio, Rocío Carratalá-Sáez, Diego R. Llanos
{"title":"挑战可移植性范式:使用 SYCL 和 OpenCL 进行 FPGA 加速","authors":"Manuel de Castro, Francisco J. andújar, Roberto R. Osorio, Rocío Carratalá-Sáez, Diego R. Llanos","doi":"arxiv-2409.03391","DOIUrl":null,"url":null,"abstract":"As the interest in FPGA-based accelerators for HPC applications increases,\nnew challenges also arise, especially concerning different programming and\nportability issues. This paper aims to provide a snapshot of the current state\nof the FPGA tooling and its problems. To do so, we evaluate the performance\nportability of two frameworks for developing FPGA solutions for HPC (SYCL and\nOpenCL) when using them to port a highly-parallel application to FPGAs, using\nboth ND-range and single-task type of kernels. The developer's general recommendation when using FPGAs is to develop\nsingle-task kernels for them, as they are commonly regarded as more suited for\nsuch hardware. However, we discovered that, when using high-level approaches\nsuch as OpenCL and SYCL to program a highly-parallel application with no\nFPGA-tailored optimizations, ND-range kernels significantly outperform\nsingle-task codes. Specifically, while SYCL struggles to produce efficient FPGA\nimplementations of applications described as single-task codes, its performance\nexcels with ND-range kernels, a result that was unexpectedly favorable.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenging Portability Paradigms: FPGA Acceleration Using SYCL and OpenCL\",\"authors\":\"Manuel de Castro, Francisco J. andújar, Roberto R. Osorio, Rocío Carratalá-Sáez, Diego R. Llanos\",\"doi\":\"arxiv-2409.03391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the interest in FPGA-based accelerators for HPC applications increases,\\nnew challenges also arise, especially concerning different programming and\\nportability issues. This paper aims to provide a snapshot of the current state\\nof the FPGA tooling and its problems. To do so, we evaluate the performance\\nportability of two frameworks for developing FPGA solutions for HPC (SYCL and\\nOpenCL) when using them to port a highly-parallel application to FPGAs, using\\nboth ND-range and single-task type of kernels. The developer's general recommendation when using FPGAs is to develop\\nsingle-task kernels for them, as they are commonly regarded as more suited for\\nsuch hardware. However, we discovered that, when using high-level approaches\\nsuch as OpenCL and SYCL to program a highly-parallel application with no\\nFPGA-tailored optimizations, ND-range kernels significantly outperform\\nsingle-task codes. Specifically, while SYCL struggles to produce efficient FPGA\\nimplementations of applications described as single-task codes, its performance\\nexcels with ND-range kernels, a result that was unexpectedly favorable.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对基于 FPGA 的高性能计算应用加速器的兴趣与日俱增,新的挑战也随之而来,尤其是在不同的编程和可移植性问题上。本文旨在简要介绍 FPGA 工具的现状及其问题。为此,我们评估了为 HPC 开发 FPGA 解决方案的两个框架(SYCL 和 OpenCL)在将高度并行的应用程序移植到 FPGA(使用 ND-range 和单任务类型的内核)时的性能可移植性。在使用 FPGA 时,开发人员的一般建议是为其开发单任务内核,因为它们通常被认为更适合此类硬件。然而,我们发现,在使用 OpenCL 和 SYCL 等高级方法对高度并行的应用程序进行编程时,如果不进行针对 FPGA 的优化,ND-range 内核的性能明显优于单任务代码。具体来说,虽然 SYCL 难以生成高效的 FPGA 实现,但其性能与 ND 范围内核相比却出乎意料地好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenging Portability Paradigms: FPGA Acceleration Using SYCL and OpenCL
As the interest in FPGA-based accelerators for HPC applications increases, new challenges also arise, especially concerning different programming and portability issues. This paper aims to provide a snapshot of the current state of the FPGA tooling and its problems. To do so, we evaluate the performance portability of two frameworks for developing FPGA solutions for HPC (SYCL and OpenCL) when using them to port a highly-parallel application to FPGAs, using both ND-range and single-task type of kernels. The developer's general recommendation when using FPGAs is to develop single-task kernels for them, as they are commonly regarded as more suited for such hardware. However, we discovered that, when using high-level approaches such as OpenCL and SYCL to program a highly-parallel application with no FPGA-tailored optimizations, ND-range kernels significantly outperform single-task codes. Specifically, while SYCL struggles to produce efficient FPGA implementations of applications described as single-task codes, its performance excels with ND-range kernels, a result that was unexpectedly favorable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信