循环 Poset 中的禁止子集

Order Pub Date : 2024-08-26 DOI:10.1007/s11083-024-09673-x
Aysan Behnia, Gholam Hossein Fath-Tabar, Gyula O. H. Katona
{"title":"循环 Poset 中的禁止子集","authors":"Aysan Behnia, Gholam Hossein Fath-Tabar, Gyula O. H. Katona","doi":"10.1007/s11083-024-09673-x","DOIUrl":null,"url":null,"abstract":"<p>The cycle poset consists of the intervals of the cyclic permutation of the elements <b>1, 2, ...</b>, <i>n</i>, ordered by inclusion. Suppose that <b><i>F</i></b> is a set of such intervals, none of them is a less than <b><i>s</i></b> others. The maximum size of <b><i>F</i></b> is determined under this condition. It is also shown that if the largest size of a set in this poset without containing a small subposet <b><i>P</i></b> is known, it solves the same problem, up to an additive constant, in the grid poset consisting of the pairs <span>\\((i,j) (1\\le i,j\\le n)\\)</span> and ordered coordinate-wise.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forbidden Subposets in the Cycle Poset\",\"authors\":\"Aysan Behnia, Gholam Hossein Fath-Tabar, Gyula O. H. Katona\",\"doi\":\"10.1007/s11083-024-09673-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cycle poset consists of the intervals of the cyclic permutation of the elements <b>1, 2, ...</b>, <i>n</i>, ordered by inclusion. Suppose that <b><i>F</i></b> is a set of such intervals, none of them is a less than <b><i>s</i></b> others. The maximum size of <b><i>F</i></b> is determined under this condition. It is also shown that if the largest size of a set in this poset without containing a small subposet <b><i>P</i></b> is known, it solves the same problem, up to an additive constant, in the grid poset consisting of the pairs <span>\\\\((i,j) (1\\\\le i,j\\\\le n)\\\\)</span> and ordered coordinate-wise.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09673-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09673-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

循环正集由元素 1、2、...、n 的循环排列的区间组成,按包容度排序。假设 F 是这样一个区间集合,其中没有一个区间小于其他 s 个区间。F 的最大大小就是在这个条件下确定的。同时也证明了,如果已知在这个集合中一个集合的最大大小不包含一个小的子集合 P,那么在由成对 \((i,j) (1\le i,j\le n)\)组成并按坐标排序的网格集合中,它也能解决同样的问题,且不超过一个加常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forbidden Subposets in the Cycle Poset

The cycle poset consists of the intervals of the cyclic permutation of the elements 1, 2, ..., n, ordered by inclusion. Suppose that F is a set of such intervals, none of them is a less than s others. The maximum size of F is determined under this condition. It is also shown that if the largest size of a set in this poset without containing a small subposet P is known, it solves the same problem, up to an additive constant, in the grid poset consisting of the pairs \((i,j) (1\le i,j\le n)\) and ordered coordinate-wise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信