Aysan Behnia, Gholam Hossein Fath-Tabar, Gyula O. H. Katona
{"title":"循环 Poset 中的禁止子集","authors":"Aysan Behnia, Gholam Hossein Fath-Tabar, Gyula O. H. Katona","doi":"10.1007/s11083-024-09673-x","DOIUrl":null,"url":null,"abstract":"<p>The cycle poset consists of the intervals of the cyclic permutation of the elements <b>1, 2, ...</b>, <i>n</i>, ordered by inclusion. Suppose that <b><i>F</i></b> is a set of such intervals, none of them is a less than <b><i>s</i></b> others. The maximum size of <b><i>F</i></b> is determined under this condition. It is also shown that if the largest size of a set in this poset without containing a small subposet <b><i>P</i></b> is known, it solves the same problem, up to an additive constant, in the grid poset consisting of the pairs <span>\\((i,j) (1\\le i,j\\le n)\\)</span> and ordered coordinate-wise.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forbidden Subposets in the Cycle Poset\",\"authors\":\"Aysan Behnia, Gholam Hossein Fath-Tabar, Gyula O. H. Katona\",\"doi\":\"10.1007/s11083-024-09673-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cycle poset consists of the intervals of the cyclic permutation of the elements <b>1, 2, ...</b>, <i>n</i>, ordered by inclusion. Suppose that <b><i>F</i></b> is a set of such intervals, none of them is a less than <b><i>s</i></b> others. The maximum size of <b><i>F</i></b> is determined under this condition. It is also shown that if the largest size of a set in this poset without containing a small subposet <b><i>P</i></b> is known, it solves the same problem, up to an additive constant, in the grid poset consisting of the pairs <span>\\\\((i,j) (1\\\\le i,j\\\\le n)\\\\)</span> and ordered coordinate-wise.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09673-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09673-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
循环正集由元素 1、2、...、n 的循环排列的区间组成,按包容度排序。假设 F 是这样一个区间集合,其中没有一个区间小于其他 s 个区间。F 的最大大小就是在这个条件下确定的。同时也证明了,如果已知在这个集合中一个集合的最大大小不包含一个小的子集合 P,那么在由成对 \((i,j) (1\le i,j\le n)\)组成并按坐标排序的网格集合中,它也能解决同样的问题,且不超过一个加常数。
The cycle poset consists of the intervals of the cyclic permutation of the elements 1, 2, ..., n, ordered by inclusion. Suppose that F is a set of such intervals, none of them is a less than s others. The maximum size of F is determined under this condition. It is also shown that if the largest size of a set in this poset without containing a small subposet P is known, it solves the same problem, up to an additive constant, in the grid poset consisting of the pairs \((i,j) (1\le i,j\le n)\) and ordered coordinate-wise.