论上下文和非清晰量子逻辑

Order Pub Date : 2024-09-05 DOI:10.1007/s11083-024-09681-x
Davide Fazio, Raffaele Mascella
{"title":"论上下文和非清晰量子逻辑","authors":"Davide Fazio, Raffaele Mascella","doi":"10.1007/s11083-024-09681-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper we provide a preliminary investigation of subclasses of bounded posets with antitone involution which are “pastings” of their maximal Kleene sub-lattices. Specifically, we introduce super-paraorthomodular lattices, namely paraothomodular lattices whose order determines, and it is fully determined by, the order of their maximal Kleene sub-algebras. It will turn out that the (spectral) paraorthomodular lattice of effects over a separable Hilbert space can be considered as a prominent example of such. Therefore, it arguably provides an algebraic/order theoretical rendering of complementarity phenomena between <i>unsharp</i> observables. A number of examples, properties and characterization theorems for structures we deal with will be outlined. For example, we prove a forbidden configuration theorem and we investigate the notion of commutativity for modular pseudo-Kleene lattices, examples of which are (spectral) paraorthomodular lattices of effects over <i>finite-dimensional</i> Hilbert spaces.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Contextuality and Unsharp Quantum Logic\",\"authors\":\"Davide Fazio, Raffaele Mascella\",\"doi\":\"10.1007/s11083-024-09681-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we provide a preliminary investigation of subclasses of bounded posets with antitone involution which are “pastings” of their maximal Kleene sub-lattices. Specifically, we introduce super-paraorthomodular lattices, namely paraothomodular lattices whose order determines, and it is fully determined by, the order of their maximal Kleene sub-algebras. It will turn out that the (spectral) paraorthomodular lattice of effects over a separable Hilbert space can be considered as a prominent example of such. Therefore, it arguably provides an algebraic/order theoretical rendering of complementarity phenomena between <i>unsharp</i> observables. A number of examples, properties and characterization theorems for structures we deal with will be outlined. For example, we prove a forbidden configuration theorem and we investigate the notion of commutativity for modular pseudo-Kleene lattices, examples of which are (spectral) paraorthomodular lattices of effects over <i>finite-dimensional</i> Hilbert spaces.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09681-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09681-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们初步研究了具有反内卷性的有界正格子类,这些子类是其最大克莱因子网格的 "粘贴"。具体地说,我们引入了超副模态网格,即其阶决定并完全由其最大克莱因子网格的阶决定的副模态网格。在可分离的希尔伯特空间上的效应的(谱)对正模态网格将被视为这种网格的一个突出例子。因此,可以说它为非锐利观测值之间的互补现象提供了代数/阶乘理论的解释。我们将概述我们处理的结构的一些例子、性质和特征定理。例如,我们证明了一个禁止配置定理,并研究了模态伪克莱因网格的交换性概念,其中的例子是有限维希尔伯特空间上效应的(谱)对正模态网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Contextuality and Unsharp Quantum Logic

In this paper we provide a preliminary investigation of subclasses of bounded posets with antitone involution which are “pastings” of their maximal Kleene sub-lattices. Specifically, we introduce super-paraorthomodular lattices, namely paraothomodular lattices whose order determines, and it is fully determined by, the order of their maximal Kleene sub-algebras. It will turn out that the (spectral) paraorthomodular lattice of effects over a separable Hilbert space can be considered as a prominent example of such. Therefore, it arguably provides an algebraic/order theoretical rendering of complementarity phenomena between unsharp observables. A number of examples, properties and characterization theorems for structures we deal with will be outlined. For example, we prove a forbidden configuration theorem and we investigate the notion of commutativity for modular pseudo-Kleene lattices, examples of which are (spectral) paraorthomodular lattices of effects over finite-dimensional Hilbert spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信