Shenwang Li, Junkuan Chen, Qiuren Su, Guangyu Zeng, Li Liu, Wusheng Shi, Thomas Wu
求助PDF
{"title":"阵列式单轴 TMR 电流传感器的自适应偏心校正方法","authors":"Shenwang Li, Junkuan Chen, Qiuren Su, Guangyu Zeng, Li Liu, Wusheng Shi, Thomas Wu","doi":"10.1002/tee.24182","DOIUrl":null,"url":null,"abstract":"Current sensors based on the tunneling magnetoresistive effect (TMR) are widely used for current measurement due to their high sensitivity, small size, and low power consumption. This paper proposes an effective error correction model to rectify the eccentricity of the transmission line, which can cause a significant measurement error in the ring‐array single‐axis TMR sensor. The model employs a convolutional neural network (CNN) to identify the relationship between the conductor eccentricity and the output of three sensors. The resulting correction factor is then fed back to eliminate the error associated with wire eccentricity. Concurrently, the Sparrow search algorithm (SSA) is employed to optimize the hyperparameters of the convolutional neural network (CNN) in order to enhance the model's performance. The experimental results demonstrate that the maximum error of the ring‐array single‐axis TMR current sensor, corrected by SSA‐CNN, is less than 0.42%, which markedly enhances the precision of the measurement. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.","PeriodicalId":13435,"journal":{"name":"IEEJ Transactions on Electrical and Electronic Engineering","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Eccentricity Correction Method for Arrayed Single‐Axis TMR Current Sensors\",\"authors\":\"Shenwang Li, Junkuan Chen, Qiuren Su, Guangyu Zeng, Li Liu, Wusheng Shi, Thomas Wu\",\"doi\":\"10.1002/tee.24182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current sensors based on the tunneling magnetoresistive effect (TMR) are widely used for current measurement due to their high sensitivity, small size, and low power consumption. This paper proposes an effective error correction model to rectify the eccentricity of the transmission line, which can cause a significant measurement error in the ring‐array single‐axis TMR sensor. The model employs a convolutional neural network (CNN) to identify the relationship between the conductor eccentricity and the output of three sensors. The resulting correction factor is then fed back to eliminate the error associated with wire eccentricity. Concurrently, the Sparrow search algorithm (SSA) is employed to optimize the hyperparameters of the convolutional neural network (CNN) in order to enhance the model's performance. The experimental results demonstrate that the maximum error of the ring‐array single‐axis TMR current sensor, corrected by SSA‐CNN, is less than 0.42%, which markedly enhances the precision of the measurement. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.\",\"PeriodicalId\":13435,\"journal\":{\"name\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tee.24182\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Transactions on Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tee.24182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用