{"title":"一类参数不确定非线性系统的沉浸和不变性自适应控制","authors":"Jian-Hui Wang, Guang-Ping He, Gui-Bin Bian, Jun-Jie Yuan, Shi-Xiong Geng, Cheng-Jie Zhang, Cheng-Hao Zhao","doi":"10.1007/s12555-023-0732-9","DOIUrl":null,"url":null,"abstract":"<p>An adaptive control method based on immersion and invariance (I&I) is presented in a class of nonlinear systems with time-varying uncertain parameters. A parameter estimation law based on reference models using I&I is designed to accelerate the convergence of estimated parameters to the true value, enabling the closed-loop system to reach the predefined target system on the manifold more quickly and reducing the energy consumption of the system. The inherent integrability obstacles in I&I are overcome by using dynamic scaling techniques, reducing the complexity of controller design. Stability analysis of the closed-loop system demonstrates that the proposed control method can achieve asymptotic stability control of the target system, and verified the robustness of the closed-loop system in the face of external disturbances. Finally, simulations of attitude tracking control demonstrate the effectiveness and superiority of the proposed method.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immersion and Invariance Adaptive Control for a Class of Nonlinear Systems With Uncertain Parameters\",\"authors\":\"Jian-Hui Wang, Guang-Ping He, Gui-Bin Bian, Jun-Jie Yuan, Shi-Xiong Geng, Cheng-Jie Zhang, Cheng-Hao Zhao\",\"doi\":\"10.1007/s12555-023-0732-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An adaptive control method based on immersion and invariance (I&I) is presented in a class of nonlinear systems with time-varying uncertain parameters. A parameter estimation law based on reference models using I&I is designed to accelerate the convergence of estimated parameters to the true value, enabling the closed-loop system to reach the predefined target system on the manifold more quickly and reducing the energy consumption of the system. The inherent integrability obstacles in I&I are overcome by using dynamic scaling techniques, reducing the complexity of controller design. Stability analysis of the closed-loop system demonstrates that the proposed control method can achieve asymptotic stability control of the target system, and verified the robustness of the closed-loop system in the face of external disturbances. Finally, simulations of attitude tracking control demonstrate the effectiveness and superiority of the proposed method.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0732-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0732-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Immersion and Invariance Adaptive Control for a Class of Nonlinear Systems With Uncertain Parameters
An adaptive control method based on immersion and invariance (I&I) is presented in a class of nonlinear systems with time-varying uncertain parameters. A parameter estimation law based on reference models using I&I is designed to accelerate the convergence of estimated parameters to the true value, enabling the closed-loop system to reach the predefined target system on the manifold more quickly and reducing the energy consumption of the system. The inherent integrability obstacles in I&I are overcome by using dynamic scaling techniques, reducing the complexity of controller design. Stability analysis of the closed-loop system demonstrates that the proposed control method can achieve asymptotic stability control of the target system, and verified the robustness of the closed-loop system in the face of external disturbances. Finally, simulations of attitude tracking control demonstrate the effectiveness and superiority of the proposed method.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.