Gesiara de França Silva de Lima, Rúbia Michele Suzuki, Admilton Gonçalves de Oliveira Junior, Ana Caroline Raimundini Aranha, Rafael Oliveira Defendi, Maria Carolina Sérgi Gomes, Maria Luíza Abreu Nicoletto, Caroline Casagrande Sipoli
{"title":"开发壳聚糖基纳米颗粒,包裹韦氏芽孢杆菌 CMRP4490 代谢物,增强对硬菌的体外防治效果","authors":"Gesiara de França Silva de Lima, Rúbia Michele Suzuki, Admilton Gonçalves de Oliveira Junior, Ana Caroline Raimundini Aranha, Rafael Oliveira Defendi, Maria Carolina Sérgi Gomes, Maria Luíza Abreu Nicoletto, Caroline Casagrande Sipoli","doi":"10.1002/cjce.25486","DOIUrl":null,"url":null,"abstract":"Modern agriculture seeks to control pests and diseases in the field while maintaining production, reducing the use of dangerous chemical molecules, and resorting to more sustainable solutions. One of the ways to achieve these objectives is biological control. Furthermore, combined with biological control, the use of nanoencapsulation techniques of biological control agents with materials that are bioavailable and biodegradable in the environment has proven to be an alternative to reducing the use of non‐renewable materials. Therefore, the present work aimed to develop a nanoparticle system for biological control of <jats:italic>Sclerotinia sclerotiorum</jats:italic>. The nanoparticle system was produced using the ionotropic gelation technique using chitosan (CHI) as a polymer. The cell‐free supernatant (CFS) of the microorganism <jats:italic>Bacillus velezensis</jats:italic> CMRP4490 was used to produce nanoparticles, as preliminary studies show that its metabolites act in biological control. The nanoparticles produced were prepared in different concentrations of CHI and CFS and their antimicrobial activity was evaluated against the fungus <jats:italic>S</jats:italic>. <jats:italic>sclerotiorum</jats:italic>. The encapsulated samples have a concentration of 20%–80% of CFS and 0.25% and 0.8% of CHI and showed a 100% inhibitory effect against <jats:italic>S</jats:italic>. <jats:italic>Sclerotiorum</jats:italic>, and the results obtained indicate a synergistic effect between CHI and CFS.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of chitosan‐based nanoparticles encapsulating Bacillus velezensis CMRP4490 metabolites for enhanced in vitro control of Sclerotinia sclerotiorum\",\"authors\":\"Gesiara de França Silva de Lima, Rúbia Michele Suzuki, Admilton Gonçalves de Oliveira Junior, Ana Caroline Raimundini Aranha, Rafael Oliveira Defendi, Maria Carolina Sérgi Gomes, Maria Luíza Abreu Nicoletto, Caroline Casagrande Sipoli\",\"doi\":\"10.1002/cjce.25486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern agriculture seeks to control pests and diseases in the field while maintaining production, reducing the use of dangerous chemical molecules, and resorting to more sustainable solutions. One of the ways to achieve these objectives is biological control. Furthermore, combined with biological control, the use of nanoencapsulation techniques of biological control agents with materials that are bioavailable and biodegradable in the environment has proven to be an alternative to reducing the use of non‐renewable materials. Therefore, the present work aimed to develop a nanoparticle system for biological control of <jats:italic>Sclerotinia sclerotiorum</jats:italic>. The nanoparticle system was produced using the ionotropic gelation technique using chitosan (CHI) as a polymer. The cell‐free supernatant (CFS) of the microorganism <jats:italic>Bacillus velezensis</jats:italic> CMRP4490 was used to produce nanoparticles, as preliminary studies show that its metabolites act in biological control. The nanoparticles produced were prepared in different concentrations of CHI and CFS and their antimicrobial activity was evaluated against the fungus <jats:italic>S</jats:italic>. <jats:italic>sclerotiorum</jats:italic>. The encapsulated samples have a concentration of 20%–80% of CFS and 0.25% and 0.8% of CHI and showed a 100% inhibitory effect against <jats:italic>S</jats:italic>. <jats:italic>Sclerotiorum</jats:italic>, and the results obtained indicate a synergistic effect between CHI and CFS.\",\"PeriodicalId\":501204,\"journal\":{\"name\":\"The Canadian Journal of Chemical Engineering\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cjce.25486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
现代农业力求在控制田间病虫害的同时保持产量,减少危险化学分子的使用,并采用更可持续的解决方案。实现这些目标的方法之一就是生物防治。此外,结合生物防治,使用纳米封装技术将生物防治剂与可在环境中生物利用和生物降解的材料相结合,已被证明是减少使用不可再生材料的一种替代方法。因此,本研究旨在开发一种纳米颗粒系统,用于硬核菌的生物防治。纳米粒子系统是以壳聚糖(CHI)为聚合物,利用离子凝胶技术生产的。由于初步研究表明无细胞上清液(CFS)微生物枯草芽孢杆菌 CMRP4490 的代谢产物具有生物防治作用,因此该微生物被用来生产纳米颗粒。用不同浓度的 CHI 和 CFS 制备了纳米颗粒,并评估了它们对真菌 S. sclerotiorum 的抗菌活性。封装样品中 CFS 的浓度为 20%-80%,CHI 的浓度为 0.25%和 0.8%,对 S. Sclerotiorum 的抑制率为 100%,结果表明 CHI 和 CFS 具有协同作用。
Development of chitosan‐based nanoparticles encapsulating Bacillus velezensis CMRP4490 metabolites for enhanced in vitro control of Sclerotinia sclerotiorum
Modern agriculture seeks to control pests and diseases in the field while maintaining production, reducing the use of dangerous chemical molecules, and resorting to more sustainable solutions. One of the ways to achieve these objectives is biological control. Furthermore, combined with biological control, the use of nanoencapsulation techniques of biological control agents with materials that are bioavailable and biodegradable in the environment has proven to be an alternative to reducing the use of non‐renewable materials. Therefore, the present work aimed to develop a nanoparticle system for biological control of Sclerotinia sclerotiorum. The nanoparticle system was produced using the ionotropic gelation technique using chitosan (CHI) as a polymer. The cell‐free supernatant (CFS) of the microorganism Bacillus velezensis CMRP4490 was used to produce nanoparticles, as preliminary studies show that its metabolites act in biological control. The nanoparticles produced were prepared in different concentrations of CHI and CFS and their antimicrobial activity was evaluated against the fungus S. sclerotiorum. The encapsulated samples have a concentration of 20%–80% of CFS and 0.25% and 0.8% of CHI and showed a 100% inhibitory effect against S. Sclerotiorum, and the results obtained indicate a synergistic effect between CHI and CFS.