辫状群表示对奇异辫状单体的扩展

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Valeriy G. Bardakov, Nafaa Chbili, Tatyana A. Kozlovskaya
{"title":"辫状群表示对奇异辫状单体的扩展","authors":"Valeriy G. Bardakov, Nafaa Chbili, Tatyana A. Kozlovskaya","doi":"10.1007/s00009-024-02718-w","DOIUrl":null,"url":null,"abstract":"<p>Given a representation <span>\\(\\varphi :B_n \\rightarrow G_n\\)</span> of the braid group <span>\\(B_n\\)</span>, <span>\\(n \\ge 2\\)</span> into a group <span>\\(G_n\\)</span>, we are considering the problem of whether it is possible to extend this representation to a representation <span>\\(\\Phi :SM_n \\rightarrow A_n\\)</span>, where <span>\\(SM_n\\)</span> is the singular braid monoid and <span>\\(A_n\\)</span> is an associative algebra, in which the group of units contains <span>\\(G_n\\)</span>. We also investigate the possibility of extending the representation <span>\\(\\Phi :SM_n \\rightarrow A_n\\)</span> to a representation <span>\\(\\widetilde{\\Phi } :SB_n \\rightarrow A_n\\)</span> of the singular braid group <span>\\(SB_n\\)</span>. On the other hand, given two linear representations <span>\\(\\varphi _1, \\varphi _2 :H \\rightarrow GL_m(\\Bbbk )\\)</span> of a group <i>H</i> into a general linear group over a field <span>\\(\\Bbbk \\)</span>, we define the defect of one of these representations with respect to the other. Furthermore, we construct a linear representation of <span>\\(SB_n\\)</span> which is an extension of the Lawrence–Krammer–Bigelow representation (LKBR) and compute the defect of this extension with respect to the exterior product of two extensions of the Burau representation. Finally, we discuss how to derive an invariant of classical links from the Lawrence–Krammer–Bigelow representation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions of Braid Group Representations to the Monoid of Singular Braids\",\"authors\":\"Valeriy G. Bardakov, Nafaa Chbili, Tatyana A. Kozlovskaya\",\"doi\":\"10.1007/s00009-024-02718-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a representation <span>\\\\(\\\\varphi :B_n \\\\rightarrow G_n\\\\)</span> of the braid group <span>\\\\(B_n\\\\)</span>, <span>\\\\(n \\\\ge 2\\\\)</span> into a group <span>\\\\(G_n\\\\)</span>, we are considering the problem of whether it is possible to extend this representation to a representation <span>\\\\(\\\\Phi :SM_n \\\\rightarrow A_n\\\\)</span>, where <span>\\\\(SM_n\\\\)</span> is the singular braid monoid and <span>\\\\(A_n\\\\)</span> is an associative algebra, in which the group of units contains <span>\\\\(G_n\\\\)</span>. We also investigate the possibility of extending the representation <span>\\\\(\\\\Phi :SM_n \\\\rightarrow A_n\\\\)</span> to a representation <span>\\\\(\\\\widetilde{\\\\Phi } :SB_n \\\\rightarrow A_n\\\\)</span> of the singular braid group <span>\\\\(SB_n\\\\)</span>. On the other hand, given two linear representations <span>\\\\(\\\\varphi _1, \\\\varphi _2 :H \\\\rightarrow GL_m(\\\\Bbbk )\\\\)</span> of a group <i>H</i> into a general linear group over a field <span>\\\\(\\\\Bbbk \\\\)</span>, we define the defect of one of these representations with respect to the other. Furthermore, we construct a linear representation of <span>\\\\(SB_n\\\\)</span> which is an extension of the Lawrence–Krammer–Bigelow representation (LKBR) and compute the defect of this extension with respect to the exterior product of two extensions of the Burau representation. Finally, we discuss how to derive an invariant of classical links from the Lawrence–Krammer–Bigelow representation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02718-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02718-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

给定辫状群 \(B_n\) 的一个表示 \(varphi :B_n\rightarrow G_n\), \(n\ge 2\) 进入一个群 \(G_n\),我们考虑的问题是是否有可能将这个表示扩展为一个表示 \(\Phi :SM_n \rightarrow A_n\),其中 \(SM_n\) 是奇异辫状单项式,\(A_n\) 是关联代数,其中的单元组包含 \(G_n\)。我们还研究了把表示 \(\Phi :SM_n \rightarrow A_n\) 扩展为奇异辫子群 \(SB_n\) 的表示 \(\widetilde{Phi } :SB_n \rightarrow A_n\) 的可能性。另一方面,给定两个线性表示 \(\varphi _1, \varphi _2 :H \rightarrow GL_m(\Bbbk )\) 把一个群 H 变为一个域上的一般线性群 \(\Bbbk\),我们定义其中一个表示相对于另一个表示的缺陷。此外,我们还构造了一个线性表示(SB_n\ ),它是劳伦斯-克拉默-比格洛表示(LKBR)的扩展,并计算了这个扩展相对于布劳表示的两个扩展的外部乘积的缺陷。最后,我们讨论了如何从劳伦斯-克拉默-比格洛表示推导出经典链路的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extensions of Braid Group Representations to the Monoid of Singular Braids

Extensions of Braid Group Representations to the Monoid of Singular Braids

Given a representation \(\varphi :B_n \rightarrow G_n\) of the braid group \(B_n\), \(n \ge 2\) into a group \(G_n\), we are considering the problem of whether it is possible to extend this representation to a representation \(\Phi :SM_n \rightarrow A_n\), where \(SM_n\) is the singular braid monoid and \(A_n\) is an associative algebra, in which the group of units contains \(G_n\). We also investigate the possibility of extending the representation \(\Phi :SM_n \rightarrow A_n\) to a representation \(\widetilde{\Phi } :SB_n \rightarrow A_n\) of the singular braid group \(SB_n\). On the other hand, given two linear representations \(\varphi _1, \varphi _2 :H \rightarrow GL_m(\Bbbk )\) of a group H into a general linear group over a field \(\Bbbk \), we define the defect of one of these representations with respect to the other. Furthermore, we construct a linear representation of \(SB_n\) which is an extension of the Lawrence–Krammer–Bigelow representation (LKBR) and compute the defect of this extension with respect to the exterior product of two extensions of the Burau representation. Finally, we discuss how to derive an invariant of classical links from the Lawrence–Krammer–Bigelow representation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信