锐底谱和标量曲率刚度

Jinmin Wang, Bo Zhu
{"title":"锐底谱和标量曲率刚度","authors":"Jinmin Wang, Bo Zhu","doi":"arxiv-2408.08245","DOIUrl":null,"url":null,"abstract":"We prove a sharp upper bound for the bottom spectrum of Laplacian on\ngeometrically contractible manifolds with scalar curvature lower bound, and\ncharacterize the distribution of scalar curvature when equality holds.\nMoreover, we prove a scalar curvature rigidity theorem if the manifold is the\nuniversal cover of a closed hyperbolic manifold.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"168 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bottom spectrum and scalar curvature rigidity\",\"authors\":\"Jinmin Wang, Bo Zhu\",\"doi\":\"arxiv-2408.08245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a sharp upper bound for the bottom spectrum of Laplacian on\\ngeometrically contractible manifolds with scalar curvature lower bound, and\\ncharacterize the distribution of scalar curvature when equality holds.\\nMoreover, we prove a scalar curvature rigidity theorem if the manifold is the\\nuniversal cover of a closed hyperbolic manifold.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有标量曲率下限的几何可收缩流形上的拉普拉斯底谱的尖锐上界,并描述了相等时标量曲率的分布特征。此外,如果流形是封闭双曲流形的普遍盖,我们还证明了标量曲率刚性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp bottom spectrum and scalar curvature rigidity
We prove a sharp upper bound for the bottom spectrum of Laplacian on geometrically contractible manifolds with scalar curvature lower bound, and characterize the distribution of scalar curvature when equality holds. Moreover, we prove a scalar curvature rigidity theorem if the manifold is the universal cover of a closed hyperbolic manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信