关于临界或亚临界分支随机游走的空球

IF 1.2 4区 数学 Q1 MATHEMATICS
Shuxiong Zhang, Jie Xiong
{"title":"关于临界或亚临界分支随机游走的空球","authors":"Shuxiong Zhang, Jie Xiong","doi":"10.1007/s10473-024-0525-0","DOIUrl":null,"url":null,"abstract":"<p>Let {<i>Z</i><sub><i>n</i></sub>}<sub><i>n</i>≥0</sub> be a critical or subcritical <i>d</i>-dimensional branching random walk started from a Poisson random measure whose intensity measure is the Lebesugue measure on ℝ<sup><i>d</i></sup>. Denote by <i>R</i><sub><i>n</i></sub>:= sup{<i>u</i> &gt; 0: <i>Z</i><sub><i>n</i></sub>({<i>x</i> ∈ ℝ<sup><i>d</i></sup>: ∣<i>x</i>∣ &lt; <i>u</i>}) = 0} the radius of the largest empty ball centered at the origin of <i>Z</i><sub><i>n</i></sub>. In this work, we prove that after suitable renormalization, <i>R</i><sub><i>n</i></sub> converges in law to some non-degenerate distribution as <i>n</i> → ∈. Furthermore, our work shows that the renormalization scales depend on the offspring law and the dimension of the branching random walk. This completes the results of Révész [13] for the critical binary branching Wiener process.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"369 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the empty balls of a critical or subcritical branching random walk\",\"authors\":\"Shuxiong Zhang, Jie Xiong\",\"doi\":\"10.1007/s10473-024-0525-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let {<i>Z</i><sub><i>n</i></sub>}<sub><i>n</i>≥0</sub> be a critical or subcritical <i>d</i>-dimensional branching random walk started from a Poisson random measure whose intensity measure is the Lebesugue measure on ℝ<sup><i>d</i></sup>. Denote by <i>R</i><sub><i>n</i></sub>:= sup{<i>u</i> &gt; 0: <i>Z</i><sub><i>n</i></sub>({<i>x</i> ∈ ℝ<sup><i>d</i></sup>: ∣<i>x</i>∣ &lt; <i>u</i>}) = 0} the radius of the largest empty ball centered at the origin of <i>Z</i><sub><i>n</i></sub>. In this work, we prove that after suitable renormalization, <i>R</i><sub><i>n</i></sub> converges in law to some non-degenerate distribution as <i>n</i> → ∈. Furthermore, our work shows that the renormalization scales depend on the offspring law and the dimension of the branching random walk. This completes the results of Révész [13] for the critical binary branching Wiener process.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"369 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0525-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0525-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 {Zn}n≥0 是一个临界或亚临界 d 维分支随机游走,从一个强度度量为ℝd 上的勒布苏格度量的泊松随机度量开始。用 Rn:= sup{u > 0: Zn({x ∈ ℝd: ∣x∣ < u}) = 0} 表示以 Zn 的原点为中心的最大空球的半径。在这项工作中,我们证明了经过适当的重正化后,Rn 在 n →∈ 时收敛于某种非退化分布的规律。此外,我们的研究还表明,重正化尺度取决于子代规律和分支随机游走的维度。这完善了 Révész [13] 对临界二元分支维纳过程的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the empty balls of a critical or subcritical branching random walk

Let {Zn}n≥0 be a critical or subcritical d-dimensional branching random walk started from a Poisson random measure whose intensity measure is the Lebesugue measure on ℝd. Denote by Rn:= sup{u > 0: Zn({x ∈ ℝd: ∣x∣ < u}) = 0} the radius of the largest empty ball centered at the origin of Zn. In this work, we prove that after suitable renormalization, Rn converges in law to some non-degenerate distribution as n → ∈. Furthermore, our work shows that the renormalization scales depend on the offspring law and the dimension of the branching random walk. This completes the results of Révész [13] for the critical binary branching Wiener process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信