紧凑算子的舒尔检验

IF 1.2 4区 数学 Q1 MATHEMATICS
Qijian Kang, Maofa Wang
{"title":"紧凑算子的舒尔检验","authors":"Qijian Kang, Maofa Wang","doi":"10.1007/s10473-024-0524-1","DOIUrl":null,"url":null,"abstract":"<p>Infinite matrix theory is an important branch of function analysis. Every linear operator on a complex separable infinite dimensional Hilbert space corresponds to an infinite matrix with respect a orthonormal base of the space, but not every infinite matrix corresponds to an operator. The classical Schur test provides an elegant and useful criterion for the boundedness of linear operators, which is considered a respectable mathematical accomplishment. In this paper, we prove the compact version of the Schur test. Moreover, we provide the Schur test for the Schatten class <i>S</i><sub>2</sub>. It is worth noting that our main results can be applicable to the general matrix without limitation on non-negative numbers. We finally provide the Schur test for compact operators from <i>l</i><sub><i>p</i></sub> into <i>l</i><sub><i>q</i></sub>.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Schur test of compact operators\",\"authors\":\"Qijian Kang, Maofa Wang\",\"doi\":\"10.1007/s10473-024-0524-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infinite matrix theory is an important branch of function analysis. Every linear operator on a complex separable infinite dimensional Hilbert space corresponds to an infinite matrix with respect a orthonormal base of the space, but not every infinite matrix corresponds to an operator. The classical Schur test provides an elegant and useful criterion for the boundedness of linear operators, which is considered a respectable mathematical accomplishment. In this paper, we prove the compact version of the Schur test. Moreover, we provide the Schur test for the Schatten class <i>S</i><sub>2</sub>. It is worth noting that our main results can be applicable to the general matrix without limitation on non-negative numbers. We finally provide the Schur test for compact operators from <i>l</i><sub><i>p</i></sub> into <i>l</i><sub><i>q</i></sub>.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0524-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0524-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

无穷矩阵理论是函数分析的一个重要分支。就空间的正交基而言,复可分离无限维希尔伯特空间上的每个线性算子都对应于一个无限矩阵,但并非每个无限矩阵都对应于一个算子。经典的舒尔检验为线性算子的有界性提供了一个优雅而有用的标准,被认为是一项令人尊敬的数学成就。在本文中,我们证明了舒尔检验的紧凑版本。此外,我们还提供了 Schatten 类 S2 的舒尔检验。值得注意的是,我们的主要结果可以适用于一般矩阵,而不受非负数的限制。最后,我们提供了从 lp 到 lq 的紧凑算子的舒尔检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Schur test of compact operators

Infinite matrix theory is an important branch of function analysis. Every linear operator on a complex separable infinite dimensional Hilbert space corresponds to an infinite matrix with respect a orthonormal base of the space, but not every infinite matrix corresponds to an operator. The classical Schur test provides an elegant and useful criterion for the boundedness of linear operators, which is considered a respectable mathematical accomplishment. In this paper, we prove the compact version of the Schur test. Moreover, we provide the Schur test for the Schatten class S2. It is worth noting that our main results can be applicable to the general matrix without limitation on non-negative numbers. We finally provide the Schur test for compact operators from lp into lq.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信