{"title":"一般基尔霍夫方程的归一化解法","authors":"Wenmin Liu, Xuexiu Zhong, Jinfang Zhou","doi":"10.1007/s10473-024-0514-3","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we prove the existence, non-existence and multiplicity of positive normalized solutions (<i>λ</i><sub><i>c</i></sub>, <i>u</i><sub><i>c</i></sub>) ∈ ℝ × <i>H</i><sup>1</sup> (ℝ<sup><i>N</i></sup>) to the general Kirchhoff problem</p><span>$$-M\\left(\\int_{\\mathbb{R}^N}\\vert\\nabla u\\vert^2 {\\rm d}x\\right)\\Delta u +\\lambda u=g(u)~\\hbox{in}~\\mathbb{R}^N, u\\in H^1(\\mathbb{R}^N),N\\geq 1,$$</span><p>satisfying the normalization constraint <span>\\(\\int_{\\mathbb{R}^N}u^2{\\rm d}x=c\\)</span>, where <i>M</i> ∈ <i>C</i>([0, ∞)) is a given function satisfying some suitable assumptions. Our argument is not by the classical variational method, but by a global branch approach developed by Jeanjean <i>et al.</i> [J Math Pures Appl, 2024, 183: 44–75] and a direct correspondence, so we can handle in a unified way the nonlinearities <i>g</i>(<i>s</i>), which are either mass subcritical, mass critical or mass supercritical.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions for the general Kirchhoff type equations\",\"authors\":\"Wenmin Liu, Xuexiu Zhong, Jinfang Zhou\",\"doi\":\"10.1007/s10473-024-0514-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper, we prove the existence, non-existence and multiplicity of positive normalized solutions (<i>λ</i><sub><i>c</i></sub>, <i>u</i><sub><i>c</i></sub>) ∈ ℝ × <i>H</i><sup>1</sup> (ℝ<sup><i>N</i></sup>) to the general Kirchhoff problem</p><span>$$-M\\\\left(\\\\int_{\\\\mathbb{R}^N}\\\\vert\\\\nabla u\\\\vert^2 {\\\\rm d}x\\\\right)\\\\Delta u +\\\\lambda u=g(u)~\\\\hbox{in}~\\\\mathbb{R}^N, u\\\\in H^1(\\\\mathbb{R}^N),N\\\\geq 1,$$</span><p>satisfying the normalization constraint <span>\\\\(\\\\int_{\\\\mathbb{R}^N}u^2{\\\\rm d}x=c\\\\)</span>, where <i>M</i> ∈ <i>C</i>([0, ∞)) is a given function satisfying some suitable assumptions. Our argument is not by the classical variational method, but by a global branch approach developed by Jeanjean <i>et al.</i> [J Math Pures Appl, 2024, 183: 44–75] and a direct correspondence, so we can handle in a unified way the nonlinearities <i>g</i>(<i>s</i>), which are either mass subcritical, mass critical or mass supercritical.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0514-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0514-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了一般基尔霍夫问题$$-M\left(int_{) 的正规范化解 (λc、uc) ∈ ℝ × H1 (ℝN) to the general Kirchhoff problem$$-M\left(int_\{mathbb{R}^N}\vert\nabla u\vert^2 {\rm d}x\right)\Delta u +\lambda u=g(u)~\hbox{in}~\mathbb{R}^N、u\in H^1(\mathbb{R}^N),N\geq 1,$$满足归一化约束条件((\int_\mathbb{R}^N}u^^2{\rm d}x=c\),其中 M∈ C([0, ∞))是一个满足一些合适假设的给定函数。我们的论证不是通过经典的变分法,而是通过 Jeanjean 等人开发的全局分支法[J Math Pures Appl, 2024, 183: 44-75]和直接对应法,因此我们可以统一处理非线性 g(s),即质量次临界、质量临界或质量超临界。
Normalized solutions for the general Kirchhoff type equations
In the present paper, we prove the existence, non-existence and multiplicity of positive normalized solutions (λc, uc) ∈ ℝ × H1 (ℝN) to the general Kirchhoff problem
$$-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2 {\rm d}x\right)\Delta u +\lambda u=g(u)~\hbox{in}~\mathbb{R}^N, u\in H^1(\mathbb{R}^N),N\geq 1,$$
satisfying the normalization constraint \(\int_{\mathbb{R}^N}u^2{\rm d}x=c\), where M ∈ C([0, ∞)) is a given function satisfying some suitable assumptions. Our argument is not by the classical variational method, but by a global branch approach developed by Jeanjean et al. [J Math Pures Appl, 2024, 183: 44–75] and a direct correspondence, so we can handle in a unified way the nonlinearities g(s), which are either mass subcritical, mass critical or mass supercritical.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.