一般基尔霍夫方程的归一化解法

IF 1.2 4区 数学 Q1 MATHEMATICS
Wenmin Liu, Xuexiu Zhong, Jinfang Zhou
{"title":"一般基尔霍夫方程的归一化解法","authors":"Wenmin Liu, Xuexiu Zhong, Jinfang Zhou","doi":"10.1007/s10473-024-0514-3","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we prove the existence, non-existence and multiplicity of positive normalized solutions (<i>λ</i><sub><i>c</i></sub>, <i>u</i><sub><i>c</i></sub>) ∈ ℝ × <i>H</i><sup>1</sup> (ℝ<sup><i>N</i></sup>) to the general Kirchhoff problem</p><span>$$-M\\left(\\int_{\\mathbb{R}^N}\\vert\\nabla u\\vert^2 {\\rm d}x\\right)\\Delta u +\\lambda u=g(u)~\\hbox{in}~\\mathbb{R}^N, u\\in H^1(\\mathbb{R}^N),N\\geq 1,$$</span><p>satisfying the normalization constraint <span>\\(\\int_{\\mathbb{R}^N}u^2{\\rm d}x=c\\)</span>, where <i>M</i> ∈ <i>C</i>([0, ∞)) is a given function satisfying some suitable assumptions. Our argument is not by the classical variational method, but by a global branch approach developed by Jeanjean <i>et al.</i> [J Math Pures Appl, 2024, 183: 44–75] and a direct correspondence, so we can handle in a unified way the nonlinearities <i>g</i>(<i>s</i>), which are either mass subcritical, mass critical or mass supercritical.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions for the general Kirchhoff type equations\",\"authors\":\"Wenmin Liu, Xuexiu Zhong, Jinfang Zhou\",\"doi\":\"10.1007/s10473-024-0514-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper, we prove the existence, non-existence and multiplicity of positive normalized solutions (<i>λ</i><sub><i>c</i></sub>, <i>u</i><sub><i>c</i></sub>) ∈ ℝ × <i>H</i><sup>1</sup> (ℝ<sup><i>N</i></sup>) to the general Kirchhoff problem</p><span>$$-M\\\\left(\\\\int_{\\\\mathbb{R}^N}\\\\vert\\\\nabla u\\\\vert^2 {\\\\rm d}x\\\\right)\\\\Delta u +\\\\lambda u=g(u)~\\\\hbox{in}~\\\\mathbb{R}^N, u\\\\in H^1(\\\\mathbb{R}^N),N\\\\geq 1,$$</span><p>satisfying the normalization constraint <span>\\\\(\\\\int_{\\\\mathbb{R}^N}u^2{\\\\rm d}x=c\\\\)</span>, where <i>M</i> ∈ <i>C</i>([0, ∞)) is a given function satisfying some suitable assumptions. Our argument is not by the classical variational method, but by a global branch approach developed by Jeanjean <i>et al.</i> [J Math Pures Appl, 2024, 183: 44–75] and a direct correspondence, so we can handle in a unified way the nonlinearities <i>g</i>(<i>s</i>), which are either mass subcritical, mass critical or mass supercritical.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0514-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0514-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了一般基尔霍夫问题$$-M\left(int_{) 的正规范化解 (λc、uc) ∈ ℝ × H1 (ℝN) to the general Kirchhoff problem$$-M\left(int_\{mathbb{R}^N}\vert\nabla u\vert^2 {\rm d}x\right)\Delta u +\lambda u=g(u)~\hbox{in}~\mathbb{R}^N、u\in H^1(\mathbb{R}^N),N\geq 1,$$满足归一化约束条件((\int_\mathbb{R}^N}u^^2{\rm d}x=c\),其中 M∈ C([0, ∞))是一个满足一些合适假设的给定函数。我们的论证不是通过经典的变分法,而是通过 Jeanjean 等人开发的全局分支法[J Math Pures Appl, 2024, 183: 44-75]和直接对应法,因此我们可以统一处理非线性 g(s),即质量次临界、质量临界或质量超临界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized solutions for the general Kirchhoff type equations

In the present paper, we prove the existence, non-existence and multiplicity of positive normalized solutions (λc, uc) ∈ ℝ × H1 (ℝN) to the general Kirchhoff problem

$$-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2 {\rm d}x\right)\Delta u +\lambda u=g(u)~\hbox{in}~\mathbb{R}^N, u\in H^1(\mathbb{R}^N),N\geq 1,$$

satisfying the normalization constraint \(\int_{\mathbb{R}^N}u^2{\rm d}x=c\), where MC([0, ∞)) is a given function satisfying some suitable assumptions. Our argument is not by the classical variational method, but by a global branch approach developed by Jeanjean et al. [J Math Pures Appl, 2024, 183: 44–75] and a direct correspondence, so we can handle in a unified way the nonlinearities g(s), which are either mass subcritical, mass critical or mass supercritical.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信