Jung Sun Kang, Bo Ra Jeong, Eung-Pyo Hong, Bok Man Lim, Byung June Choi, Youn Baek Lee, Yun Hee Chang
{"title":"针对建筑工人的可调硬度被动腰部辅助外骨骼的肌电图和可用性评估","authors":"Jung Sun Kang, Bo Ra Jeong, Eung-Pyo Hong, Bok Man Lim, Byung June Choi, Youn Baek Lee, Yun Hee Chang","doi":"10.1007/s12541-024-01059-8","DOIUrl":null,"url":null,"abstract":"<p>Construction workers experience high rates of low back muscle strain due to frequent lifting of heavy objects. This study examined the effectiveness of an adjustable stiffness passive waist-assist exoskeleton (WIBS) in reducing muscle activity during lifting tasks. Ten male participants performed lifting and lowering tasks both with and without the WIBS. Muscle activity in the thoracic/lumbar erector spinae and multifidus muscles was measured using electromyography. The study also assessed the usability of the exoskeleton. The results revealed that WIBS significantly reduced low back muscle activity by up to 12.5% during lifting and 15.5% during lowering of 10 kg objects, particularly at stiffness levels 2 and 3. Notably, no significant difference was observed at the free and level 1 settings. While increasing stiffness generally decreased muscle activity, there was no significant difference between stiffness levels. The participants positively rated the exoskeleton, with an average satisfaction score of 84.6 across various aspects, including suitability, stability, safety, comfort, and effectiveness. These findings suggest that WIBS could be a valuable tool for reducing muscle strain and the risk of musculoskeletal disorders in construction workers. Longitudinal studies are required to evaluate the long-term use of this technology by construction workers and its effectiveness in a wider range of construction tasks.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMG and Usability Assessment of Adjustable Stiffness Passive Waist-Assist Exoskeletons for Construction Workers\",\"authors\":\"Jung Sun Kang, Bo Ra Jeong, Eung-Pyo Hong, Bok Man Lim, Byung June Choi, Youn Baek Lee, Yun Hee Chang\",\"doi\":\"10.1007/s12541-024-01059-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Construction workers experience high rates of low back muscle strain due to frequent lifting of heavy objects. This study examined the effectiveness of an adjustable stiffness passive waist-assist exoskeleton (WIBS) in reducing muscle activity during lifting tasks. Ten male participants performed lifting and lowering tasks both with and without the WIBS. Muscle activity in the thoracic/lumbar erector spinae and multifidus muscles was measured using electromyography. The study also assessed the usability of the exoskeleton. The results revealed that WIBS significantly reduced low back muscle activity by up to 12.5% during lifting and 15.5% during lowering of 10 kg objects, particularly at stiffness levels 2 and 3. Notably, no significant difference was observed at the free and level 1 settings. While increasing stiffness generally decreased muscle activity, there was no significant difference between stiffness levels. The participants positively rated the exoskeleton, with an average satisfaction score of 84.6 across various aspects, including suitability, stability, safety, comfort, and effectiveness. These findings suggest that WIBS could be a valuable tool for reducing muscle strain and the risk of musculoskeletal disorders in construction workers. Longitudinal studies are required to evaluate the long-term use of this technology by construction workers and its effectiveness in a wider range of construction tasks.</p>\",\"PeriodicalId\":14359,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12541-024-01059-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01059-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
EMG and Usability Assessment of Adjustable Stiffness Passive Waist-Assist Exoskeletons for Construction Workers
Construction workers experience high rates of low back muscle strain due to frequent lifting of heavy objects. This study examined the effectiveness of an adjustable stiffness passive waist-assist exoskeleton (WIBS) in reducing muscle activity during lifting tasks. Ten male participants performed lifting and lowering tasks both with and without the WIBS. Muscle activity in the thoracic/lumbar erector spinae and multifidus muscles was measured using electromyography. The study also assessed the usability of the exoskeleton. The results revealed that WIBS significantly reduced low back muscle activity by up to 12.5% during lifting and 15.5% during lowering of 10 kg objects, particularly at stiffness levels 2 and 3. Notably, no significant difference was observed at the free and level 1 settings. While increasing stiffness generally decreased muscle activity, there was no significant difference between stiffness levels. The participants positively rated the exoskeleton, with an average satisfaction score of 84.6 across various aspects, including suitability, stability, safety, comfort, and effectiveness. These findings suggest that WIBS could be a valuable tool for reducing muscle strain and the risk of musculoskeletal disorders in construction workers. Longitudinal studies are required to evaluate the long-term use of this technology by construction workers and its effectiveness in a wider range of construction tasks.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.