{"title":"中心或偏离中心的后路腰椎椎间融合器和经椎间隙腰椎椎间融合器固定架下沉","authors":"Seong-Won Kim, Hyun-Yong Jeong","doi":"10.1007/s12541-024-01122-4","DOIUrl":null,"url":null,"abstract":"<p>Lumbar interbody fusion cages have been widely used to restore spine alignment. However, it has been speculated whether a single long transforaminal lumbar interbody fusion cage is as effective as a pair of short posterior lumbar interbody fusion cages in preventing excessive subsidence, and how much posterior and transforaminal lumbar interbody fusion cages subside if they are placed off the center of the endplate towards the epiphyseal ring. Thus, in this study finite element models of the lumbar interbody fusion cages and the vertebrae, including the endplate and the epiphyseal ring, were created, and finite element simulations were conducted to estimate the subsidence of a pair of posterior lumbar interbody fusion cages and a single transforaminal lumbar interbody fusion cage not only placed at the center of the endplate but also placed off-center. The finite element simulation results indicated that a long transforaminal lumbar interbody fusion cage was equally or more effective in reducing subsidence compared to a pair of posterior lumbar interbody fusion cages. Furthermore, the results also showed that both posterior and transforaminal lumbar interbody fusion cages resulted in less subsidence when placed off-center and closer to the epiphyseal ring.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsidence of Center or Off-Center Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion Cages\",\"authors\":\"Seong-Won Kim, Hyun-Yong Jeong\",\"doi\":\"10.1007/s12541-024-01122-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lumbar interbody fusion cages have been widely used to restore spine alignment. However, it has been speculated whether a single long transforaminal lumbar interbody fusion cage is as effective as a pair of short posterior lumbar interbody fusion cages in preventing excessive subsidence, and how much posterior and transforaminal lumbar interbody fusion cages subside if they are placed off the center of the endplate towards the epiphyseal ring. Thus, in this study finite element models of the lumbar interbody fusion cages and the vertebrae, including the endplate and the epiphyseal ring, were created, and finite element simulations were conducted to estimate the subsidence of a pair of posterior lumbar interbody fusion cages and a single transforaminal lumbar interbody fusion cage not only placed at the center of the endplate but also placed off-center. The finite element simulation results indicated that a long transforaminal lumbar interbody fusion cage was equally or more effective in reducing subsidence compared to a pair of posterior lumbar interbody fusion cages. Furthermore, the results also showed that both posterior and transforaminal lumbar interbody fusion cages resulted in less subsidence when placed off-center and closer to the epiphyseal ring.</p>\",\"PeriodicalId\":14359,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12541-024-01122-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01122-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Subsidence of Center or Off-Center Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion Cages
Lumbar interbody fusion cages have been widely used to restore spine alignment. However, it has been speculated whether a single long transforaminal lumbar interbody fusion cage is as effective as a pair of short posterior lumbar interbody fusion cages in preventing excessive subsidence, and how much posterior and transforaminal lumbar interbody fusion cages subside if they are placed off the center of the endplate towards the epiphyseal ring. Thus, in this study finite element models of the lumbar interbody fusion cages and the vertebrae, including the endplate and the epiphyseal ring, were created, and finite element simulations were conducted to estimate the subsidence of a pair of posterior lumbar interbody fusion cages and a single transforaminal lumbar interbody fusion cage not only placed at the center of the endplate but also placed off-center. The finite element simulation results indicated that a long transforaminal lumbar interbody fusion cage was equally or more effective in reducing subsidence compared to a pair of posterior lumbar interbody fusion cages. Furthermore, the results also showed that both posterior and transforaminal lumbar interbody fusion cages resulted in less subsidence when placed off-center and closer to the epiphyseal ring.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.