流体-粒子相互作用模型流态平稳解的全局存在性和唯一性

IF 1.2 4区 数学 Q1 MATHEMATICS
Lin Zheng, Shu Wang
{"title":"流体-粒子相互作用模型流态平稳解的全局存在性和唯一性","authors":"Lin Zheng, Shu Wang","doi":"10.1007/s10473-024-0513-4","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime in ℝ<sup>3</sup>. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence and uniqueness of global smooth solutions in <i>H</i><sup>3</sup> of the system are established by using the careful energy method.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"37 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The global existence and uniqueness of smooth solutions to a fluid-particle interaction model in the flowing regime\",\"authors\":\"Lin Zheng, Shu Wang\",\"doi\":\"10.1007/s10473-024-0513-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime in ℝ<sup>3</sup>. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence and uniqueness of global smooth solutions in <i>H</i><sup>3</sup> of the system are established by using the careful energy method.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0513-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0513-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是ℝ3 中所谓流动体系中三维流体-粒子相互作用模型的 Cauchy 问题。在一些 Sobolev 空间中,在外部势和静止解的初始扰动都很小的假设下,利用谨慎能量法建立了系统在 H3 中全局光滑解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The global existence and uniqueness of smooth solutions to a fluid-particle interaction model in the flowing regime

This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime in ℝ3. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信