非局部索波列夫空间的紧凑嵌入结果和非局部薛定谔方程符号变化解的多重性

IF 1.2 4区 数学 Q1 MATHEMATICS
Xu Zhang, Hao Zhai, Fukun Zhao
{"title":"非局部索波列夫空间的紧凑嵌入结果和非局部薛定谔方程符号变化解的多重性","authors":"Xu Zhang, Hao Zhai, Fukun Zhao","doi":"10.1007/s10473-024-0512-5","DOIUrl":null,"url":null,"abstract":"<p>For any <i>s</i> ∈ (0, 1), let the nonlocal Sobolev space <i>X</i><sup><i>s</i></sup>(ℝ<sup><i>N</i></sup>) be the linear space of Lebesgue measure functions from ℝ<sup><i>N</i></sup> to ℝ such that any function <i>u</i> in <i>X</i><sup>s</sup>(ℝ<sup><i>N</i></sup>) belongs to <i>L</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) and the function</p><span>$$(x,y)\\longmapsto\\big(u(x)-u(y)\\big)\\sqrt{K(x-y)}$$</span><p>is in <i>L</i><sup>2</sup>(ℝ<sup><i>N</i></sup>, ℝ<sup><i>N</i></sup>). First, we show, for a coercive function <i>V</i>(<i>x</i>), the subspace</p><span>$$E:=\\bigg\\{u\\in X^s(\\mathbb{R}^N):\\int_{\\mathbb{R}^N}V(x)u^2{\\rm d}x&lt;+\\infty\\bigg\\}$$</span><p>of <i>X</i><sup><i>s</i></sup>(ℝ<sup><i>N</i></sup>) is embedded compactly into <i>L</i><sup><i>p</i></sup>(ℝ<sup><i>N</i></sup>) for <span>\\(p\\in[2,2_s^*)\\)</span>, where <span>\\(2_s^*\\)</span> is the fractional Sobolev critical exponent. In terms of applications, the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation</p><span>$$-{\\cal{L}_K}u+V(x)u=f(x,u),\\ x\\in\\ \\mathbb{R}^N$$</span><p>are obtained, where <span>\\(-{\\cal{L}_K}\\)</span> is an integro-differential operator and <i>V</i> is coercive at infinity.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact embedding result for nonlocal Sobolev spaces and multiplicity of sign-changing solutions for nonlocal Schrödinger equations\",\"authors\":\"Xu Zhang, Hao Zhai, Fukun Zhao\",\"doi\":\"10.1007/s10473-024-0512-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any <i>s</i> ∈ (0, 1), let the nonlocal Sobolev space <i>X</i><sup><i>s</i></sup>(ℝ<sup><i>N</i></sup>) be the linear space of Lebesgue measure functions from ℝ<sup><i>N</i></sup> to ℝ such that any function <i>u</i> in <i>X</i><sup>s</sup>(ℝ<sup><i>N</i></sup>) belongs to <i>L</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) and the function</p><span>$$(x,y)\\\\longmapsto\\\\big(u(x)-u(y)\\\\big)\\\\sqrt{K(x-y)}$$</span><p>is in <i>L</i><sup>2</sup>(ℝ<sup><i>N</i></sup>, ℝ<sup><i>N</i></sup>). First, we show, for a coercive function <i>V</i>(<i>x</i>), the subspace</p><span>$$E:=\\\\bigg\\\\{u\\\\in X^s(\\\\mathbb{R}^N):\\\\int_{\\\\mathbb{R}^N}V(x)u^2{\\\\rm d}x&lt;+\\\\infty\\\\bigg\\\\}$$</span><p>of <i>X</i><sup><i>s</i></sup>(ℝ<sup><i>N</i></sup>) is embedded compactly into <i>L</i><sup><i>p</i></sup>(ℝ<sup><i>N</i></sup>) for <span>\\\\(p\\\\in[2,2_s^*)\\\\)</span>, where <span>\\\\(2_s^*\\\\)</span> is the fractional Sobolev critical exponent. In terms of applications, the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation</p><span>$$-{\\\\cal{L}_K}u+V(x)u=f(x,u),\\\\ x\\\\in\\\\ \\\\mathbb{R}^N$$</span><p>are obtained, where <span>\\\\(-{\\\\cal{L}_K}\\\\)</span> is an integro-differential operator and <i>V</i> is coercive at infinity.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0512-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0512-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意 s∈ (0,1),让非局部 Sobolev 空间 Xs(ℝN) 是从 ℝN 到 ℝ 的 Lebesgue 度量函数的线性空间,使得 Xs(ℝN) 中的任何函数 u 都属于 L2(ℝN),并且函数$$(x、y)\longmapsto\big(u(x)-u(y)\big)\sqrt{K(x-y)}$$ 在 L2(ℝN, ℝN) 中。首先,我们证明,对于胁迫函数 V(x),子空间$E:=\bigg\{u\in X^s(\mathbb{R}^N):\int_{/mathbb{R}^N}V(x)u^2{rm d}x<+\infty\bigg\}$$的Xs(ℝN)子空间紧凑地嵌入到Lp(ℝN)中,为\(p\in[2,2_s^*)\),其中\(2_s^*\)是分数索博列夫临界指数。在应用方面,得到了非局部薛定谔方程$$-{\cal{L}_K}u+V(x)u=f(x,u),\x\\in\mathbb{R}^N$$的最小能量符号变化解和无穷多个符号变化解的存在,其中\(-{\cal{L}_K}\)是一个整微分算子,V在无穷处是强制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compact embedding result for nonlocal Sobolev spaces and multiplicity of sign-changing solutions for nonlocal Schrödinger equations

For any s ∈ (0, 1), let the nonlocal Sobolev space Xs(ℝN) be the linear space of Lebesgue measure functions from ℝN to ℝ such that any function u in Xs(ℝN) belongs to L2(ℝN) and the function

$$(x,y)\longmapsto\big(u(x)-u(y)\big)\sqrt{K(x-y)}$$

is in L2(ℝN, ℝN). First, we show, for a coercive function V(x), the subspace

$$E:=\bigg\{u\in X^s(\mathbb{R}^N):\int_{\mathbb{R}^N}V(x)u^2{\rm d}x<+\infty\bigg\}$$

of Xs(ℝN) is embedded compactly into Lp(ℝN) for \(p\in[2,2_s^*)\), where \(2_s^*\) is the fractional Sobolev critical exponent. In terms of applications, the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation

$$-{\cal{L}_K}u+V(x)u=f(x,u),\ x\in\ \mathbb{R}^N$$

are obtained, where \(-{\cal{L}_K}\) is an integro-differential operator and V is coercive at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信