{"title":"硬质图形产品","authors":"Matthijs Borst, Martijn Caspers, Enli Chen","doi":"arxiv-2408.06171","DOIUrl":null,"url":null,"abstract":"We prove rigidity properties for von Neumann algebraic graph products. We\nintroduce the notion of rigid graphs and define a class of II$_1$-factors named\n$\\mathcal{C}_{\\rm Rigid}$. For von Neumann algebras in this class we show a\nunique rigid graph product decomposition. In particular, we obtain unique prime\nfactorization results and unique free product decomposition results for new\nclasses of von Neumann algebras. We also prove several technical results\nconcerning relative amenability and embeddings of (quasi)-normalizers in graph\nproducts. Furthermore, we give sufficient conditions for a graph product to be\nnuclear and characterize strong solidity, primeness and free-indecomposability\nfor graph products.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigid Graph Products\",\"authors\":\"Matthijs Borst, Martijn Caspers, Enli Chen\",\"doi\":\"arxiv-2408.06171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove rigidity properties for von Neumann algebraic graph products. We\\nintroduce the notion of rigid graphs and define a class of II$_1$-factors named\\n$\\\\mathcal{C}_{\\\\rm Rigid}$. For von Neumann algebras in this class we show a\\nunique rigid graph product decomposition. In particular, we obtain unique prime\\nfactorization results and unique free product decomposition results for new\\nclasses of von Neumann algebras. We also prove several technical results\\nconcerning relative amenability and embeddings of (quasi)-normalizers in graph\\nproducts. Furthermore, we give sufficient conditions for a graph product to be\\nnuclear and characterize strong solidity, primeness and free-indecomposability\\nfor graph products.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了 von Neumann 代数图积的刚性属性。我们引入了刚性图的概念,并定义了一类名为$\mathcal{C}_{rm Rigid}$的 II$_1$ 因子。对于这一类中的冯-诺依曼代数,我们展示了独特的刚性图积分解。特别是,我们得到了新类冯-诺依曼代数的唯一素因子化结果和唯一自由积分解结果。我们还证明了与图积中的(准)归一化子的相对适配性和嵌入有关的几个技术结果。此外,我们还给出了图积成核的充分条件,并描述了图积的强实体性、原始性和自由不可分性。
We prove rigidity properties for von Neumann algebraic graph products. We
introduce the notion of rigid graphs and define a class of II$_1$-factors named
$\mathcal{C}_{\rm Rigid}$. For von Neumann algebras in this class we show a
unique rigid graph product decomposition. In particular, we obtain unique prime
factorization results and unique free product decomposition results for new
classes of von Neumann algebras. We also prove several technical results
concerning relative amenability and embeddings of (quasi)-normalizers in graph
products. Furthermore, we give sufficient conditions for a graph product to be
nuclear and characterize strong solidity, primeness and free-indecomposability
for graph products.