渐近圆锥流形上的舒宾伪微分学

Thomas Krainer
{"title":"渐近圆锥流形上的舒宾伪微分学","authors":"Thomas Krainer","doi":"arxiv-2408.08169","DOIUrl":null,"url":null,"abstract":"We present a global pseudodifferential calculus on asymptotically conic\nmanifolds that generalizes (anisotropic versions of) Shubin's classical global\npseudodifferential calculus on Euclidean space to this class of noncompact\nmanifolds. Fully elliptic operators are shown to be Fredholm in an associated\nscale of Sobolev spaces, and to have parametrices in the calculus.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Shubin pseudodifferential calculus on asymptotically conic manifolds\",\"authors\":\"Thomas Krainer\",\"doi\":\"arxiv-2408.08169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a global pseudodifferential calculus on asymptotically conic\\nmanifolds that generalizes (anisotropic versions of) Shubin's classical global\\npseudodifferential calculus on Euclidean space to this class of noncompact\\nmanifolds. Fully elliptic operators are shown to be Fredholm in an associated\\nscale of Sobolev spaces, and to have parametrices in the calculus.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了渐近圆锥曼菲尔德上的全局伪微分学,它将舒宾在欧几里得空间上的经典全局伪微分学(各向异性版本)推广到这一类非紧凑曼菲尔德上。研究表明,全椭圆算子在索波列夫空间的关联尺度中是弗雷德霍尔姆的,并且在微积分中具有参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Shubin pseudodifferential calculus on asymptotically conic manifolds
We present a global pseudodifferential calculus on asymptotically conic manifolds that generalizes (anisotropic versions of) Shubin's classical global pseudodifferential calculus on Euclidean space to this class of noncompact manifolds. Fully elliptic operators are shown to be Fredholm in an associated scale of Sobolev spaces, and to have parametrices in the calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信