{"title":"渐近圆锥流形上的舒宾伪微分学","authors":"Thomas Krainer","doi":"arxiv-2408.08169","DOIUrl":null,"url":null,"abstract":"We present a global pseudodifferential calculus on asymptotically conic\nmanifolds that generalizes (anisotropic versions of) Shubin's classical global\npseudodifferential calculus on Euclidean space to this class of noncompact\nmanifolds. Fully elliptic operators are shown to be Fredholm in an associated\nscale of Sobolev spaces, and to have parametrices in the calculus.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Shubin pseudodifferential calculus on asymptotically conic manifolds\",\"authors\":\"Thomas Krainer\",\"doi\":\"arxiv-2408.08169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a global pseudodifferential calculus on asymptotically conic\\nmanifolds that generalizes (anisotropic versions of) Shubin's classical global\\npseudodifferential calculus on Euclidean space to this class of noncompact\\nmanifolds. Fully elliptic operators are shown to be Fredholm in an associated\\nscale of Sobolev spaces, and to have parametrices in the calculus.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Shubin pseudodifferential calculus on asymptotically conic manifolds
We present a global pseudodifferential calculus on asymptotically conic
manifolds that generalizes (anisotropic versions of) Shubin's classical global
pseudodifferential calculus on Euclidean space to this class of noncompact
manifolds. Fully elliptic operators are shown to be Fredholm in an associated
scale of Sobolev spaces, and to have parametrices in the calculus.