{"title":"具有有限生成的 K 群的单元基希贝格代数的 K 理论不变式","authors":"Kengo Matsumoto, Taro Sogabe","doi":"arxiv-2408.09359","DOIUrl":null,"url":null,"abstract":"We introduce a hierarchy for unital Kirchberg algebras with finitely\ngenerated K-groups by which the 1st and 2nd homotopy groups of the automorphism\ngroups serve as a complete invariant of classification. We also give a complete\ninvariant specific to the case of unital Kirchberg algebras with finitely\ngenerated K-groups and provide a useful tool to classify the Cuntz--Krieger\nalgebras.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-theoretic invariants for unital Kirchberg algebras with finitely generated K-groups\",\"authors\":\"Kengo Matsumoto, Taro Sogabe\",\"doi\":\"arxiv-2408.09359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a hierarchy for unital Kirchberg algebras with finitely\\ngenerated K-groups by which the 1st and 2nd homotopy groups of the automorphism\\ngroups serve as a complete invariant of classification. We also give a complete\\ninvariant specific to the case of unital Kirchberg algebras with finitely\\ngenerated K-groups and provide a useful tool to classify the Cuntz--Krieger\\nalgebras.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们为具有有限生成 K 群的基希贝格单原子代数引入了一种层次结构,通过这种层次结构,自变群的第 1 和第 2 同调群可作为分类的完全不变式。我们还给出了具有有限生成 K 群的单元基希贝格数组的完整不变量,并为 Cuntz--Kriegeralgebras 的分类提供了有用的工具。
K-theoretic invariants for unital Kirchberg algebras with finitely generated K-groups
We introduce a hierarchy for unital Kirchberg algebras with finitely
generated K-groups by which the 1st and 2nd homotopy groups of the automorphism
groups serve as a complete invariant of classification. We also give a complete
invariant specific to the case of unital Kirchberg algebras with finitely
generated K-groups and provide a useful tool to classify the Cuntz--Krieger
algebras.