由向量束扭转的部分自形的 Cuntz-Pimsner 代数 I:定点代数、简单性和三态空间

Aaron Kettner
{"title":"由向量束扭转的部分自形的 Cuntz-Pimsner 代数 I:定点代数、简单性和三态空间","authors":"Aaron Kettner","doi":"arxiv-2408.10047","DOIUrl":null,"url":null,"abstract":"We associate a $C^*$-algebra to a partial action of the integers acting on\nthe base space of a vector bundle, using the framework of Cuntz--Pimsner\nalgebras. We investigate the structure of the fixed point algebra under the\ncanonical gauge action, and show that it arises from a continuous field of\n$C^*$-algebras over the base space, generalising results of Vasselli. We also\nanalyse the ideal structure, and show that for a free action, ideals correspond\nto open invariant subspaces of the base space. This shows that if the action is\nfree and minimal, then the Cuntz--Pimsner algebra is simple. Finally we\nestablish a bijective corrrespondence between tracial states and invariant\nmeasures on the base space, thereby calculating part of the Elliott invariant.\nThis generalizes results about the $C^*$-algebras associated to homeomorphisms\ntwisted by vector bundles of Adamo, Archey, Forough, Georgescu, Jeong, Strung\nand Viola.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cuntz--Pimsner algebras of partial automorphisms twisted by vector bundles I: Fixed point algebra, simplicity and the tracial state space\",\"authors\":\"Aaron Kettner\",\"doi\":\"arxiv-2408.10047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We associate a $C^*$-algebra to a partial action of the integers acting on\\nthe base space of a vector bundle, using the framework of Cuntz--Pimsner\\nalgebras. We investigate the structure of the fixed point algebra under the\\ncanonical gauge action, and show that it arises from a continuous field of\\n$C^*$-algebras over the base space, generalising results of Vasselli. We also\\nanalyse the ideal structure, and show that for a free action, ideals correspond\\nto open invariant subspaces of the base space. This shows that if the action is\\nfree and minimal, then the Cuntz--Pimsner algebra is simple. Finally we\\nestablish a bijective corrrespondence between tracial states and invariant\\nmeasures on the base space, thereby calculating part of the Elliott invariant.\\nThis generalizes results about the $C^*$-algebras associated to homeomorphisms\\ntwisted by vector bundles of Adamo, Archey, Forough, Georgescu, Jeong, Strung\\nand Viola.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用 Cuntz-Pimsneralgebras 框架,将 $C^*$ 代数与作用于向量束基底空间的整数部分作用联系起来。我们研究了在典型规规作用下的定点代数结构,并证明它产生于基底空间上的 C^*$ 代数的连续场,从而推广了瓦塞利的结果。我们还分析了理想结构,并证明对于自由作用,理想对应于基空间的开放不变子空间。这表明,如果作用是自由且最小的,那么 Cuntz-Pimsner 代数就是简单的。最后,我们在三态与基空间上的不变量之间建立了双射对应关系,从而计算出了埃利奥特不变量的一部分。这概括了阿达莫、阿切、福罗、乔治斯库、郑、斯特朗和维奥拉等人关于由向量束扭曲的同态相关的$C^*$代数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cuntz--Pimsner algebras of partial automorphisms twisted by vector bundles I: Fixed point algebra, simplicity and the tracial state space
We associate a $C^*$-algebra to a partial action of the integers acting on the base space of a vector bundle, using the framework of Cuntz--Pimsner algebras. We investigate the structure of the fixed point algebra under the canonical gauge action, and show that it arises from a continuous field of $C^*$-algebras over the base space, generalising results of Vasselli. We also analyse the ideal structure, and show that for a free action, ideals correspond to open invariant subspaces of the base space. This shows that if the action is free and minimal, then the Cuntz--Pimsner algebra is simple. Finally we establish a bijective corrrespondence between tracial states and invariant measures on the base space, thereby calculating part of the Elliott invariant. This generalizes results about the $C^*$-algebras associated to homeomorphisms twisted by vector bundles of Adamo, Archey, Forough, Georgescu, Jeong, Strung and Viola.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信