赫米特交叉积巴拿赫代数

Rachid El Harti, Paulo R. Pinto
{"title":"赫米特交叉积巴拿赫代数","authors":"Rachid El Harti, Paulo R. Pinto","doi":"arxiv-2408.11466","DOIUrl":null,"url":null,"abstract":"We show that the Banach *-algebra $\\ell^1(G,A,\\alpha)$, arising from a\nC*-dynamical system $(A,G,\\alpha)$, is an hermitian Banach algebra if the\ndiscrete group $G$ is finite or abelian (or more generally, a finite extension\nof a nilpotent group). As a corollary, we obtain that $\\ell^1(\\mathbb{Z},C(X),\\alpha)$ is hermitian,\nfor every topological dynamical system $\\Sigma = (X, \\sigma)$, where $\\sigma:\nX\\to X$ is a homeomorphism of a compact Hausdorff space $X$ and the action is\n$\\alpha_n(f)=f\\circ \\sigma^{-n}$ with $n\\in\\mathbb{Z}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermitian crossed product Banach algebras\",\"authors\":\"Rachid El Harti, Paulo R. Pinto\",\"doi\":\"arxiv-2408.11466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Banach *-algebra $\\\\ell^1(G,A,\\\\alpha)$, arising from a\\nC*-dynamical system $(A,G,\\\\alpha)$, is an hermitian Banach algebra if the\\ndiscrete group $G$ is finite or abelian (or more generally, a finite extension\\nof a nilpotent group). As a corollary, we obtain that $\\\\ell^1(\\\\mathbb{Z},C(X),\\\\alpha)$ is hermitian,\\nfor every topological dynamical system $\\\\Sigma = (X, \\\\sigma)$, where $\\\\sigma:\\nX\\\\to X$ is a homeomorphism of a compact Hausdorff space $X$ and the action is\\n$\\\\alpha_n(f)=f\\\\circ \\\\sigma^{-n}$ with $n\\\\in\\\\mathbb{Z}$.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果离散群 $G$ 是有限的或阿贝尔的(或者更一般地说,是零能群的有限扩展),那么由 C* 动力系统 $(A,G,\alpha)$ 产生的 Banach *-algebra $\ell^1(G,A,\alpha)$ 就是一个全息 Banach 代数。作为推论,我们可以得到,对于每一个拓扑动力系统 $\Sigma = (X, \sigma)$ 都是全等的,其中 $\sigma:X/to X$ 是紧凑 Hausdorff 空间 $X$ 的同构,作用是$alpha_n(f)=f/circ \sigma^{-n}$,$nin\mathbb{Z}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermitian crossed product Banach algebras
We show that the Banach *-algebra $\ell^1(G,A,\alpha)$, arising from a C*-dynamical system $(A,G,\alpha)$, is an hermitian Banach algebra if the discrete group $G$ is finite or abelian (or more generally, a finite extension of a nilpotent group). As a corollary, we obtain that $\ell^1(\mathbb{Z},C(X),\alpha)$ is hermitian, for every topological dynamical system $\Sigma = (X, \sigma)$, where $\sigma: X\to X$ is a homeomorphism of a compact Hausdorff space $X$ and the action is $\alpha_n(f)=f\circ \sigma^{-n}$ with $n\in\mathbb{Z}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信