{"title":"赫米特交叉积巴拿赫代数","authors":"Rachid El Harti, Paulo R. Pinto","doi":"arxiv-2408.11466","DOIUrl":null,"url":null,"abstract":"We show that the Banach *-algebra $\\ell^1(G,A,\\alpha)$, arising from a\nC*-dynamical system $(A,G,\\alpha)$, is an hermitian Banach algebra if the\ndiscrete group $G$ is finite or abelian (or more generally, a finite extension\nof a nilpotent group). As a corollary, we obtain that $\\ell^1(\\mathbb{Z},C(X),\\alpha)$ is hermitian,\nfor every topological dynamical system $\\Sigma = (X, \\sigma)$, where $\\sigma:\nX\\to X$ is a homeomorphism of a compact Hausdorff space $X$ and the action is\n$\\alpha_n(f)=f\\circ \\sigma^{-n}$ with $n\\in\\mathbb{Z}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermitian crossed product Banach algebras\",\"authors\":\"Rachid El Harti, Paulo R. Pinto\",\"doi\":\"arxiv-2408.11466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Banach *-algebra $\\\\ell^1(G,A,\\\\alpha)$, arising from a\\nC*-dynamical system $(A,G,\\\\alpha)$, is an hermitian Banach algebra if the\\ndiscrete group $G$ is finite or abelian (or more generally, a finite extension\\nof a nilpotent group). As a corollary, we obtain that $\\\\ell^1(\\\\mathbb{Z},C(X),\\\\alpha)$ is hermitian,\\nfor every topological dynamical system $\\\\Sigma = (X, \\\\sigma)$, where $\\\\sigma:\\nX\\\\to X$ is a homeomorphism of a compact Hausdorff space $X$ and the action is\\n$\\\\alpha_n(f)=f\\\\circ \\\\sigma^{-n}$ with $n\\\\in\\\\mathbb{Z}$.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the Banach *-algebra $\ell^1(G,A,\alpha)$, arising from a
C*-dynamical system $(A,G,\alpha)$, is an hermitian Banach algebra if the
discrete group $G$ is finite or abelian (or more generally, a finite extension
of a nilpotent group). As a corollary, we obtain that $\ell^1(\mathbb{Z},C(X),\alpha)$ is hermitian,
for every topological dynamical system $\Sigma = (X, \sigma)$, where $\sigma:
X\to X$ is a homeomorphism of a compact Hausdorff space $X$ and the action is
$\alpha_n(f)=f\circ \sigma^{-n}$ with $n\in\mathbb{Z}$.