非交换支盖和束单可化性

Alexandru Chirvasitu
{"title":"非交换支盖和束单可化性","authors":"Alexandru Chirvasitu","doi":"arxiv-2409.03531","DOIUrl":null,"url":null,"abstract":"We prove that (a) the sections space of a continuous unital subhomogeneous\n$C^*$ bundle over compact metrizable $X$ admits a finite-index expectation onto\n$C(X)$, answering a question of Blanchard-Gogi\\'{c} (in the metrizable case);\n(b) such expectations cannot, generally, have ``optimal index'', answering\nnegatively a variant of the same question; and (c) a homogeneous continuous\nBanach bundle over a locally paracompact base space $X$ can be renormed into a\nHilbert bundle in such a manner that the original space of bounded sections is\n$C_b(X)$-linearly Banach-Mazur-close to the resulting Hilbert module over the\nalgebra $C_b(X)$ of continuous bounded functions on $X$. This last result\nresolves quantitatively another problem posed by Gogi\\'{c}.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative branched covers and bundle unitarizability\",\"authors\":\"Alexandru Chirvasitu\",\"doi\":\"arxiv-2409.03531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that (a) the sections space of a continuous unital subhomogeneous\\n$C^*$ bundle over compact metrizable $X$ admits a finite-index expectation onto\\n$C(X)$, answering a question of Blanchard-Gogi\\\\'{c} (in the metrizable case);\\n(b) such expectations cannot, generally, have ``optimal index'', answering\\nnegatively a variant of the same question; and (c) a homogeneous continuous\\nBanach bundle over a locally paracompact base space $X$ can be renormed into a\\nHilbert bundle in such a manner that the original space of bounded sections is\\n$C_b(X)$-linearly Banach-Mazur-close to the resulting Hilbert module over the\\nalgebra $C_b(X)$ of continuous bounded functions on $X$. This last result\\nresolves quantitatively another problem posed by Gogi\\\\'{c}.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明:(a) 在紧凑可元胞$X$上的连续单素次均质$C^*$束的截面空间允许有限指数期望到$C(X)$上,这回答了布兰查德-戈吉(Blanchard-Gogi\'{c})的一个问题(在可元胞情况下);(b) 一般来说,这种期望不可能有 "最优指数",这否定地回答了同一问题的一个变体;(c) 在局部准紧密基空间 $X$ 上的同质连续巴纳赫(Banach)束可以以这样的方式重整为希尔伯特(Hilbert)束,即原来的有界部分空间是$C_b(X)$线性巴纳赫-马祖尔(Banach-Mazur)-接近于在连续有界函数 $X$ 上的代数$C_b(X)$上得到的希尔伯特模块。这最后一个结果定量地解决了 Gogi\'{c} 提出的另一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-commutative branched covers and bundle unitarizability
We prove that (a) the sections space of a continuous unital subhomogeneous $C^*$ bundle over compact metrizable $X$ admits a finite-index expectation onto $C(X)$, answering a question of Blanchard-Gogi\'{c} (in the metrizable case); (b) such expectations cannot, generally, have ``optimal index'', answering negatively a variant of the same question; and (c) a homogeneous continuous Banach bundle over a locally paracompact base space $X$ can be renormed into a Hilbert bundle in such a manner that the original space of bounded sections is $C_b(X)$-linearly Banach-Mazur-close to the resulting Hilbert module over the algebra $C_b(X)$ of continuous bounded functions on $X$. This last result resolves quantitatively another problem posed by Gogi\'{c}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信