高度函数备注

Igor V. Nikolaev
{"title":"高度函数备注","authors":"Igor V. Nikolaev","doi":"arxiv-2408.12020","DOIUrl":null,"url":null,"abstract":"Let $k$ be a number field and $V(k)$ an $n$-dimensional projective variety\nover $k$. We use the $K$-theory of a $C^*$-algebra $A_V$ associated to $V(k)$\nto define a height of points of $V(k)$. The corresponding counting function is\ncalculated and we show that it coincides with the known formulas for $n=1$. As\nan application, it is proved that the set $V(k)$ is finite, whenever the sum of\nthe odd Betti numbers of $V(k)$ exceeds $n+1$. Our construction depends on the\n$n$-dimensional Minkowski question-mark function studied by Panti and others.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remark on height functions\",\"authors\":\"Igor V. Nikolaev\",\"doi\":\"arxiv-2408.12020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ be a number field and $V(k)$ an $n$-dimensional projective variety\\nover $k$. We use the $K$-theory of a $C^*$-algebra $A_V$ associated to $V(k)$\\nto define a height of points of $V(k)$. The corresponding counting function is\\ncalculated and we show that it coincides with the known formulas for $n=1$. As\\nan application, it is proved that the set $V(k)$ is finite, whenever the sum of\\nthe odd Betti numbers of $V(k)$ exceeds $n+1$. Our construction depends on the\\n$n$-dimensional Minkowski question-mark function studied by Panti and others.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $k$ 是一个数域,$V(k)$ 是 $k$ 上的 $n$ 维投影簇。我们利用与 $V(k)$ 相关联的 $C^*$-algebra $A_V$ 的 $K$ 理论来定义 $V(k)$ 的点高。我们计算了相应的计数函数,并证明它与已知的 $n=1$ 公式相吻合。作为应用,我们证明了只要 $V(k)$ 的奇数贝蒂数之和超过 $n+1$,集合 $V(k)$ 就是有限的。我们的构造依赖于潘提等人研究的 $n$ 维明考斯基问号函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remark on height functions
Let $k$ be a number field and $V(k)$ an $n$-dimensional projective variety over $k$. We use the $K$-theory of a $C^*$-algebra $A_V$ associated to $V(k)$ to define a height of points of $V(k)$. The corresponding counting function is calculated and we show that it coincides with the known formulas for $n=1$. As an application, it is proved that the set $V(k)$ is finite, whenever the sum of the odd Betti numbers of $V(k)$ exceeds $n+1$. Our construction depends on the $n$-dimensional Minkowski question-mark function studied by Panti and others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信