{"title":"冯-诺依曼代数单元群的普遍覆盖群","authors":"Pawel Sarkowicz","doi":"arxiv-2408.13710","DOIUrl":null,"url":null,"abstract":"We give a short and simple proof, utilizing the pre-determinant of P. de la\nHarpe and G. Skandalis, that the universal covering group of the unitary group\nof a II$_1$ von Neumann algebra $\\mathcal{M}$, when equipped with the norm\ntopology, splits algebraically as the direct product of the self-adjoint part\nof its center and the unitary group $U(\\mathcal{M})$. Thus, when $\\mathcal{M}$\nis a II$_1$ factor, the universal covering group of $U(\\mathcal{M})$ is\nalgebraically isomorphic to the direct product $\\mathbb{R} \\times\nU(\\mathcal{M})$. In particular, the question of P. de la Harpe and D. McDuff of\nwhether the universal cover of $U(\\mathcal{M})$ is a perfect group is answered\nin the negative.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal covering groups of unitary groups of von Neumann algebras\",\"authors\":\"Pawel Sarkowicz\",\"doi\":\"arxiv-2408.13710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a short and simple proof, utilizing the pre-determinant of P. de la\\nHarpe and G. Skandalis, that the universal covering group of the unitary group\\nof a II$_1$ von Neumann algebra $\\\\mathcal{M}$, when equipped with the norm\\ntopology, splits algebraically as the direct product of the self-adjoint part\\nof its center and the unitary group $U(\\\\mathcal{M})$. Thus, when $\\\\mathcal{M}$\\nis a II$_1$ factor, the universal covering group of $U(\\\\mathcal{M})$ is\\nalgebraically isomorphic to the direct product $\\\\mathbb{R} \\\\times\\nU(\\\\mathcal{M})$. In particular, the question of P. de la Harpe and D. McDuff of\\nwhether the universal cover of $U(\\\\mathcal{M})$ is a perfect group is answered\\nin the negative.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们利用 P. de laHarpe 和 G. Skandalis 的预判定式给出了一个简短的证明:当配备了规范拓扑学时,一个 II$_1$ von Neumann 代数 $\mathcal{M}$ 的单元群的普遍覆盖群在代数上分裂为其中心自交部分与单元群 $U(\mathcal{M})$ 的直接乘积。因此,当 $\mathcal{M}$ 是一个 II$_1$ 因子时,$U(\mathcal{M})$ 的普遍覆盖组在代数上与 $\mathbb{R} \timesU(\mathcal{M})$ 的直积同构。特别是,P. de la Harpe 和 D. McDuff 关于 $U(\mathcal{M})$ 的普遍盖是否是一个完全群的问题得到了否定的回答。
Universal covering groups of unitary groups of von Neumann algebras
We give a short and simple proof, utilizing the pre-determinant of P. de la
Harpe and G. Skandalis, that the universal covering group of the unitary group
of a II$_1$ von Neumann algebra $\mathcal{M}$, when equipped with the norm
topology, splits algebraically as the direct product of the self-adjoint part
of its center and the unitary group $U(\mathcal{M})$. Thus, when $\mathcal{M}$
is a II$_1$ factor, the universal covering group of $U(\mathcal{M})$ is
algebraically isomorphic to the direct product $\mathbb{R} \times
U(\mathcal{M})$. In particular, the question of P. de la Harpe and D. McDuff of
whether the universal cover of $U(\mathcal{M})$ is a perfect group is answered
in the negative.