非 Kac 紧凑量子群上中心傅里叶级数的 Khintchine 不等式

Sang-Gyun Youn
{"title":"非 Kac 紧凑量子群上中心傅里叶级数的 Khintchine 不等式","authors":"Sang-Gyun Youn","doi":"arxiv-2408.13519","DOIUrl":null,"url":null,"abstract":"The study of Khintchin inequalities has a long history in abstract harmonic\nanalysis. While there is almost no possibility of non-trivial Khintchine\ninequality for central Fourier series on compact connected semisimple Lie\ngroups, we demonstrate a strong contrast within the framework of compact\nquantum groups. Specifically, we establish a Khintchine inequality with\noperator coefficients for arbitrary central Fourier series in a large class of\nnon-Kac compact quantum groups. The main examples include the Drinfeld-Jimbo\n$q$-deformations $G_q$, the free orthogonal quantum groups $O_F^+$, and the\nquantum automorphism group $G_{aut}(B,\\psi)$ with a $\\delta$-form $\\psi$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Khintchine inequality for central Fourier series on non-Kac compact quantum groups\",\"authors\":\"Sang-Gyun Youn\",\"doi\":\"arxiv-2408.13519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Khintchin inequalities has a long history in abstract harmonic\\nanalysis. While there is almost no possibility of non-trivial Khintchine\\ninequality for central Fourier series on compact connected semisimple Lie\\ngroups, we demonstrate a strong contrast within the framework of compact\\nquantum groups. Specifically, we establish a Khintchine inequality with\\noperator coefficients for arbitrary central Fourier series in a large class of\\nnon-Kac compact quantum groups. The main examples include the Drinfeld-Jimbo\\n$q$-deformations $G_q$, the free orthogonal quantum groups $O_F^+$, and the\\nquantum automorphism group $G_{aut}(B,\\\\psi)$ with a $\\\\delta$-form $\\\\psi$.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

辛钦不等式的研究在抽象调和分析中由来已久。虽然在紧凑相连的半简单李群上几乎不可能存在中心傅里叶级数的非难Khintchine不等式,但我们在紧凑量子群的框架内证明了一个强烈的对比。具体地说,我们为一大类非 Kac 紧凑量子群中的任意中心傅里叶级数建立了带操作系数的 Khintchine 不等式。主要例子包括 Drinfeld-Jimbo$q$ 变形 $G_q$、自由正交量子群 $O_F^+$,以及具有 $\delta$ 形式 $\psi$ 的量子自变群 $G_{aut}(B,\psi)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Khintchine inequality for central Fourier series on non-Kac compact quantum groups
The study of Khintchin inequalities has a long history in abstract harmonic analysis. While there is almost no possibility of non-trivial Khintchine inequality for central Fourier series on compact connected semisimple Lie groups, we demonstrate a strong contrast within the framework of compact quantum groups. Specifically, we establish a Khintchine inequality with operator coefficients for arbitrary central Fourier series in a large class of non-Kac compact quantum groups. The main examples include the Drinfeld-Jimbo $q$-deformations $G_q$, the free orthogonal quantum groups $O_F^+$, and the quantum automorphism group $G_{aut}(B,\psi)$ with a $\delta$-form $\psi$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信