{"title":"从 $C(Ω)$ 到 $C^*$ 代数的同态分类","authors":"Qingnan An, George Elliott, Zhichao Liu","doi":"arxiv-2408.16657","DOIUrl":null,"url":null,"abstract":"Let $\\Omega$ be a compact subset of $\\mathbb{C}$ and let $A$ be a unital\nsimple, separable $C^*$-algebra with stable rank one, real rank zero and strict\ncomparison. We show that, given a Cu-morphism $\\alpha:{\\rm Cu}(C(\\Omega))\\to\n{\\rm Cu}(A)$ with $\\alpha(\\langle \\mathds{1}_{\\Omega}\\rangle)\\leq \\langle\n1_A\\rangle$, there exists a homomorphism $\\phi: C(\\Omega)\\to A$ such that ${\\rm\nCu}(\\phi)=\\alpha$ and $\\phi$ is unique up to approximate unitary equivalence.\nWe also give classification results for maps from a large class of\n$C^*$-algebras to $A$ in terms of the Cuntz semigroup.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of homomorphisms from $C(Ω)$ to a $C^*$-algebra\",\"authors\":\"Qingnan An, George Elliott, Zhichao Liu\",\"doi\":\"arxiv-2408.16657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Omega$ be a compact subset of $\\\\mathbb{C}$ and let $A$ be a unital\\nsimple, separable $C^*$-algebra with stable rank one, real rank zero and strict\\ncomparison. We show that, given a Cu-morphism $\\\\alpha:{\\\\rm Cu}(C(\\\\Omega))\\\\to\\n{\\\\rm Cu}(A)$ with $\\\\alpha(\\\\langle \\\\mathds{1}_{\\\\Omega}\\\\rangle)\\\\leq \\\\langle\\n1_A\\\\rangle$, there exists a homomorphism $\\\\phi: C(\\\\Omega)\\\\to A$ such that ${\\\\rm\\nCu}(\\\\phi)=\\\\alpha$ and $\\\\phi$ is unique up to approximate unitary equivalence.\\nWe also give classification results for maps from a large class of\\n$C^*$-algebras to $A$ in terms of the Cuntz semigroup.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of homomorphisms from $C(Ω)$ to a $C^*$-algebra
Let $\Omega$ be a compact subset of $\mathbb{C}$ and let $A$ be a unital
simple, separable $C^*$-algebra with stable rank one, real rank zero and strict
comparison. We show that, given a Cu-morphism $\alpha:{\rm Cu}(C(\Omega))\to
{\rm Cu}(A)$ with $\alpha(\langle \mathds{1}_{\Omega}\rangle)\leq \langle
1_A\rangle$, there exists a homomorphism $\phi: C(\Omega)\to A$ such that ${\rm
Cu}(\phi)=\alpha$ and $\phi$ is unique up to approximate unitary equivalence.
We also give classification results for maps from a large class of
$C^*$-algebras to $A$ in terms of the Cuntz semigroup.