{"title":"具有琐碎边界映射的博克斯坦运算和扩展","authors":"Qingnan An, Zhichao Liu","doi":"arxiv-2408.17055","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the relationship between ideal structures and\nthe Bockstein operations in the total K-theory, offering various diagrams to\ndemonstrate their effectiveness in classification. We explore different\nsituations and demonstrate a variety of conclusions, highlighting the crucial\nrole these structures play within the framework of invariants.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bockstein operations and extensions with trivial boundary maps\",\"authors\":\"Qingnan An, Zhichao Liu\",\"doi\":\"arxiv-2408.17055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the relationship between ideal structures and\\nthe Bockstein operations in the total K-theory, offering various diagrams to\\ndemonstrate their effectiveness in classification. We explore different\\nsituations and demonstrate a variety of conclusions, highlighting the crucial\\nrole these structures play within the framework of invariants.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了理想结构与全 K 理论中的博克斯坦运算之间的关系,并提供了各种图表来证明它们在分类中的有效性。我们探讨了不同的情况,证明了各种结论,突出了这些结构在不变式框架中的关键作用。
Bockstein operations and extensions with trivial boundary maps
In this paper, we investigate the relationship between ideal structures and
the Bockstein operations in the total K-theory, offering various diagrams to
demonstrate their effectiveness in classification. We explore different
situations and demonstrate a variety of conclusions, highlighting the crucial
role these structures play within the framework of invariants.