图上的非交换距离:通过伯克霍夫-詹姆斯正交性的显式方法

Pierre Clare, Chi-Kwong Li, Edward Poon, Eric Swartz
{"title":"图上的非交换距离:通过伯克霍夫-詹姆斯正交性的显式方法","authors":"Pierre Clare, Chi-Kwong Li, Edward Poon, Eric Swartz","doi":"arxiv-2409.04146","DOIUrl":null,"url":null,"abstract":"We study the problem of calculating noncommutative distances on graphs, using\ntechniques from linear algebra, specifically, Birkhoff-James orthogonality. A\ncomplete characterization of the solutions is obtained in the case when the\nunderlying graph is a path.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative distances on graphs: An explicit approach via Birkhoff-James orthogonality\",\"authors\":\"Pierre Clare, Chi-Kwong Li, Edward Poon, Eric Swartz\",\"doi\":\"arxiv-2409.04146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of calculating noncommutative distances on graphs, using\\ntechniques from linear algebra, specifically, Birkhoff-James orthogonality. A\\ncomplete characterization of the solutions is obtained in the case when the\\nunderlying graph is a path.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用线性代数的技术,特别是伯克霍夫-詹姆斯正交性,研究了计算图上非交换距离的问题。在底层图是路径的情况下,我们得到了解的完整特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative distances on graphs: An explicit approach via Birkhoff-James orthogonality
We study the problem of calculating noncommutative distances on graphs, using techniques from linear algebra, specifically, Birkhoff-James orthogonality. A complete characterization of the solutions is obtained in the case when the underlying graph is a path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信