Pierre Clare, Chi-Kwong Li, Edward Poon, Eric Swartz
{"title":"图上的非交换距离:通过伯克霍夫-詹姆斯正交性的显式方法","authors":"Pierre Clare, Chi-Kwong Li, Edward Poon, Eric Swartz","doi":"arxiv-2409.04146","DOIUrl":null,"url":null,"abstract":"We study the problem of calculating noncommutative distances on graphs, using\ntechniques from linear algebra, specifically, Birkhoff-James orthogonality. A\ncomplete characterization of the solutions is obtained in the case when the\nunderlying graph is a path.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative distances on graphs: An explicit approach via Birkhoff-James orthogonality\",\"authors\":\"Pierre Clare, Chi-Kwong Li, Edward Poon, Eric Swartz\",\"doi\":\"arxiv-2409.04146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of calculating noncommutative distances on graphs, using\\ntechniques from linear algebra, specifically, Birkhoff-James orthogonality. A\\ncomplete characterization of the solutions is obtained in the case when the\\nunderlying graph is a path.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noncommutative distances on graphs: An explicit approach via Birkhoff-James orthogonality
We study the problem of calculating noncommutative distances on graphs, using
techniques from linear algebra, specifically, Birkhoff-James orthogonality. A
complete characterization of the solutions is obtained in the case when the
underlying graph is a path.