局部 C^{*} 代数的字符空间和格尔方型表示

Santhosh Kumar Pamula, Rifat Siddique
{"title":"局部 C^{*} 代数的字符空间和格尔方型表示","authors":"Santhosh Kumar Pamula, Rifat Siddique","doi":"arxiv-2409.01755","DOIUrl":null,"url":null,"abstract":"In this article, we identify a suitable approach to define the character\nspace of a commutative unital locally $C^{\\ast}$-algebra via the notion of the\ninductive limit of topological spaces. Also, we discuss topological properties\nof the character space. We establish the Gelfand type representation between a\ncommutative unital locally $C^{\\ast}$-algebra and the space of all continuous\nfunctions defined on its character space. Equivalently, we prove that every\ncommutative unital locally $C^{\\ast}$-algebra is identified with the locally\n$C^{\\ast}$-algebra of continuous functions on its character space through the\ncoherent representation of projective limit of $C^{\\ast}$-algebras. Finally, we\nconstruct a unital locally $C^{\\ast}$-algebra generated by a given locally\nbounded normal operator and show that its character space is homeomorphic to\nthe local spectrum. Further, we define the functional calculus and prove\nspectral mapping theorem in this framework.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character Space and Gelfand type representation of locally C^{*}-algebra\",\"authors\":\"Santhosh Kumar Pamula, Rifat Siddique\",\"doi\":\"arxiv-2409.01755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we identify a suitable approach to define the character\\nspace of a commutative unital locally $C^{\\\\ast}$-algebra via the notion of the\\ninductive limit of topological spaces. Also, we discuss topological properties\\nof the character space. We establish the Gelfand type representation between a\\ncommutative unital locally $C^{\\\\ast}$-algebra and the space of all continuous\\nfunctions defined on its character space. Equivalently, we prove that every\\ncommutative unital locally $C^{\\\\ast}$-algebra is identified with the locally\\n$C^{\\\\ast}$-algebra of continuous functions on its character space through the\\ncoherent representation of projective limit of $C^{\\\\ast}$-algebras. Finally, we\\nconstruct a unital locally $C^{\\\\ast}$-algebra generated by a given locally\\nbounded normal operator and show that its character space is homeomorphic to\\nthe local spectrum. Further, we define the functional calculus and prove\\nspectral mapping theorem in this framework.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们通过拓扑空间的归纳极限概念,确定了定义交换独元局部 $C^{\ast}$ 代数的字符空间的合适方法。同时,我们还讨论了字符空间的拓扑性质。我们在一个互素单元局部 $C^{\ast}$ 代数和定义在其特征空间上的所有连续函数的空间之间建立了格尔芬德型表示。等价地,我们通过$C^{/ast}$-代数的投影极限的相干表示,证明了每一个交换单整局部$C^{/ast}$-代数都与其特征空间上的局部$C^{/ast}$-连续函数代数相一致。最后,我们构造了一个由给定的局部有界正算子生成的单元局部$C^{ast}$代数,并证明其特征空间与局部谱同构。此外,我们在这个框架中定义了函数微积分并证明了谱映射定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Character Space and Gelfand type representation of locally C^{*}-algebra
In this article, we identify a suitable approach to define the character space of a commutative unital locally $C^{\ast}$-algebra via the notion of the inductive limit of topological spaces. Also, we discuss topological properties of the character space. We establish the Gelfand type representation between a commutative unital locally $C^{\ast}$-algebra and the space of all continuous functions defined on its character space. Equivalently, we prove that every commutative unital locally $C^{\ast}$-algebra is identified with the locally $C^{\ast}$-algebra of continuous functions on its character space through the coherent representation of projective limit of $C^{\ast}$-algebras. Finally, we construct a unital locally $C^{\ast}$-algebra generated by a given locally bounded normal operator and show that its character space is homeomorphic to the local spectrum. Further, we define the functional calculus and prove spectral mapping theorem in this framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信