$\mathrm{C}^\ast$-原子的佩德森理想上的自共迹

James Gabe, Alistair Miller
{"title":"$\\mathrm{C}^\\ast$-原子的佩德森理想上的自共迹","authors":"James Gabe, Alistair Miller","doi":"arxiv-2409.03587","DOIUrl":null,"url":null,"abstract":"In order to circumvent a fundamental issue when studying densely defined\ntraces on $\\mathrm{C}^\\ast$-algebras -- which we refer to as the Trace Question\n-- we initiate a systematic study of the set $T_{\\mathbb R}(A)$ of self-adjoint\ntraces on the Pedersen ideal of $A$. The set $T_{\\mathbb R}(A)$ is a topological vector space with a vector\nlattice structure, which in the unital setting reflects the Choquet simplex\nstructure of the tracial states. We establish a form of Kadison duality for\n$T_{\\mathbb R}(A)$ and compute $T_{\\mathbb R}(A)$ for principal twisted \\'etale\ngroupoid $\\mathrm{C}^\\ast$-algebras. We also answer the Trace Question\npositively for a large class of $\\mathrm{C}^\\ast$-algebras.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-adjoint traces on the Pedersen ideal of $\\\\mathrm{C}^\\\\ast$-algebras\",\"authors\":\"James Gabe, Alistair Miller\",\"doi\":\"arxiv-2409.03587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to circumvent a fundamental issue when studying densely defined\\ntraces on $\\\\mathrm{C}^\\\\ast$-algebras -- which we refer to as the Trace Question\\n-- we initiate a systematic study of the set $T_{\\\\mathbb R}(A)$ of self-adjoint\\ntraces on the Pedersen ideal of $A$. The set $T_{\\\\mathbb R}(A)$ is a topological vector space with a vector\\nlattice structure, which in the unital setting reflects the Choquet simplex\\nstructure of the tracial states. We establish a form of Kadison duality for\\n$T_{\\\\mathbb R}(A)$ and compute $T_{\\\\mathbb R}(A)$ for principal twisted \\\\'etale\\ngroupoid $\\\\mathrm{C}^\\\\ast$-algebras. We also answer the Trace Question\\npositively for a large class of $\\\\mathrm{C}^\\\\ast$-algebras.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了规避在$\mathrm{C}^\ast$-gebras上研究密集定义的迹时的一个基本问题--我们称之为迹问题--我们开始系统地研究在$A$的Pedersen理想上的自相关迹的集合$T_{\mathbb R}(A)$。集合 $T_{\{mathbb R}(A)$ 是一个具有向量格结构的拓扑向量空间,它在单原子设定中反映了三元态的乔凯简约结构。我们为$T_{\mathbb R}(A)$ 建立了一种卡迪森对偶性,并计算了主扭曲 \'etalegroupoid $\mathrm{C}^\ast$- 算法的$T_{\mathbb R}(A)$ 。我们还正面回答了一大类 $\mathrm{C}^\ast$ 对象的痕量问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-adjoint traces on the Pedersen ideal of $\mathrm{C}^\ast$-algebras
In order to circumvent a fundamental issue when studying densely defined traces on $\mathrm{C}^\ast$-algebras -- which we refer to as the Trace Question -- we initiate a systematic study of the set $T_{\mathbb R}(A)$ of self-adjoint traces on the Pedersen ideal of $A$. The set $T_{\mathbb R}(A)$ is a topological vector space with a vector lattice structure, which in the unital setting reflects the Choquet simplex structure of the tracial states. We establish a form of Kadison duality for $T_{\mathbb R}(A)$ and compute $T_{\mathbb R}(A)$ for principal twisted \'etale groupoid $\mathrm{C}^\ast$-algebras. We also answer the Trace Question positively for a large class of $\mathrm{C}^\ast$-algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信