{"title":"将 C*-代数嵌入 $\\ell^{p}$ 的卡尔金代数中","authors":"March T. Boedihardjo","doi":"arxiv-2409.07386","DOIUrl":null,"url":null,"abstract":"Let $p\\in(1,\\infty)$. We show that there is an isomorphism from any separable\nunital subalgebra of $B(\\ell^{2})/K(\\ell^{2})$ onto a subalgebra of\n$B(\\ell^{p})/K(\\ell^{p})$ that preserves the Fredholm index. As a consequence,\nevery separable $C^{*}$-algebra is isomorphic to a subalgebra of\n$B(\\ell^{p})/K(\\ell^{p})$. Another consequence is the existence of operators on\n$\\ell^{p}$ that behave like the essentially normal operators with arbitrary\nFredholm indices in the Brown-Douglas-Fillmore theory.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding C*-algebras into the Calkin algebra of $\\\\ell^{p}$\",\"authors\":\"March T. Boedihardjo\",\"doi\":\"arxiv-2409.07386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p\\\\in(1,\\\\infty)$. We show that there is an isomorphism from any separable\\nunital subalgebra of $B(\\\\ell^{2})/K(\\\\ell^{2})$ onto a subalgebra of\\n$B(\\\\ell^{p})/K(\\\\ell^{p})$ that preserves the Fredholm index. As a consequence,\\nevery separable $C^{*}$-algebra is isomorphic to a subalgebra of\\n$B(\\\\ell^{p})/K(\\\\ell^{p})$. Another consequence is the existence of operators on\\n$\\\\ell^{p}$ that behave like the essentially normal operators with arbitrary\\nFredholm indices in the Brown-Douglas-Fillmore theory.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Embedding C*-algebras into the Calkin algebra of $\ell^{p}$
Let $p\in(1,\infty)$. We show that there is an isomorphism from any separable
unital subalgebra of $B(\ell^{2})/K(\ell^{2})$ onto a subalgebra of
$B(\ell^{p})/K(\ell^{p})$ that preserves the Fredholm index. As a consequence,
every separable $C^{*}$-algebra is isomorphic to a subalgebra of
$B(\ell^{p})/K(\ell^{p})$. Another consequence is the existence of operators on
$\ell^{p}$ that behave like the essentially normal operators with arbitrary
Fredholm indices in the Brown-Douglas-Fillmore theory.