将 C*-代数嵌入 $\ell^{p}$ 的卡尔金代数中

March T. Boedihardjo
{"title":"将 C*-代数嵌入 $\\ell^{p}$ 的卡尔金代数中","authors":"March T. Boedihardjo","doi":"arxiv-2409.07386","DOIUrl":null,"url":null,"abstract":"Let $p\\in(1,\\infty)$. We show that there is an isomorphism from any separable\nunital subalgebra of $B(\\ell^{2})/K(\\ell^{2})$ onto a subalgebra of\n$B(\\ell^{p})/K(\\ell^{p})$ that preserves the Fredholm index. As a consequence,\nevery separable $C^{*}$-algebra is isomorphic to a subalgebra of\n$B(\\ell^{p})/K(\\ell^{p})$. Another consequence is the existence of operators on\n$\\ell^{p}$ that behave like the essentially normal operators with arbitrary\nFredholm indices in the Brown-Douglas-Fillmore theory.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding C*-algebras into the Calkin algebra of $\\\\ell^{p}$\",\"authors\":\"March T. Boedihardjo\",\"doi\":\"arxiv-2409.07386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p\\\\in(1,\\\\infty)$. We show that there is an isomorphism from any separable\\nunital subalgebra of $B(\\\\ell^{2})/K(\\\\ell^{2})$ onto a subalgebra of\\n$B(\\\\ell^{p})/K(\\\\ell^{p})$ that preserves the Fredholm index. As a consequence,\\nevery separable $C^{*}$-algebra is isomorphic to a subalgebra of\\n$B(\\\\ell^{p})/K(\\\\ell^{p})$. Another consequence is the existence of operators on\\n$\\\\ell^{p}$ that behave like the essentially normal operators with arbitrary\\nFredholm indices in the Brown-Douglas-Fillmore theory.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $p\in(1,\infty)$.我们证明,从$B(\ell^{2})/K(\ell^{2})$ 的任何可分离的无穷子代数到$B(\ell^{p})/K(\ell^{p})$ 的子代数之间存在一个保留弗雷德霍姆指数的同构。因此,每一个可分离的 $C^{*}$ 代数都与$B(\ell^{p})/K(\ell^{p})$ 的子代数同构。另一个结果是,$ell^{p}$上存在行为类似于布朗-道格拉斯-菲尔莫尔理论中具有任意弗雷德霍姆指数的本质上正常的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding C*-algebras into the Calkin algebra of $\ell^{p}$
Let $p\in(1,\infty)$. We show that there is an isomorphism from any separable unital subalgebra of $B(\ell^{2})/K(\ell^{2})$ onto a subalgebra of $B(\ell^{p})/K(\ell^{p})$ that preserves the Fredholm index. As a consequence, every separable $C^{*}$-algebra is isomorphic to a subalgebra of $B(\ell^{p})/K(\ell^{p})$. Another consequence is the existence of operators on $\ell^{p}$ that behave like the essentially normal operators with arbitrary Fredholm indices in the Brown-Douglas-Fillmore theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信