考虑断裂行为的高强度钢方形空心截面 T 型接头的滞回性能

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shubang Liu, Shicai Chen, Liqun Hou, Zhengming Zhou
{"title":"考虑断裂行为的高强度钢方形空心截面 T 型接头的滞回性能","authors":"Shubang Liu, Shicai Chen, Liqun Hou, Zhengming Zhou","doi":"10.1177/13694332241276056","DOIUrl":null,"url":null,"abstract":"The performance of high-strength steel (HSS) welding joints is crucial for tubular structure design. This paper investigates the hysteretic performance of HSS square hollow section (SHS) T joints considering fracture behaviors. The hysteresis and tensile tests of the HSS SHS T joints and a comparative analysis of failure modes and bearing capacity are conducted. Parameter analysis is conducted based on the validated FE model considering fracture and elastoplastic constitutive relationship with a wide range of parameters covered, including the cross-sectional width ratio and the wall thickness ratio between brace and chord, and the width-thickness ratio of the chord, and the seam weld size of the joint connection. The results show that fracture behavior can affect the failure mode and bearing capacity of the joints, and it cannot be ignored in the hysteresis analysis process. The energy consumption capacity and the ductility coefficients increase when β increases from 0.2 to 1.0, τ increases from 0.3 to 1.0 and 2 γ decreases from 40 to 20. Meanwhile, joints’ failure modes and residual strength vary with the above parameters. It is necessary to use the damage fracture constitutive model of steel in numerical simulation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hysteretic performance of high-strength steel square hollow section T joints considering fracture behavior\",\"authors\":\"Shubang Liu, Shicai Chen, Liqun Hou, Zhengming Zhou\",\"doi\":\"10.1177/13694332241276056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of high-strength steel (HSS) welding joints is crucial for tubular structure design. This paper investigates the hysteretic performance of HSS square hollow section (SHS) T joints considering fracture behaviors. The hysteresis and tensile tests of the HSS SHS T joints and a comparative analysis of failure modes and bearing capacity are conducted. Parameter analysis is conducted based on the validated FE model considering fracture and elastoplastic constitutive relationship with a wide range of parameters covered, including the cross-sectional width ratio and the wall thickness ratio between brace and chord, and the width-thickness ratio of the chord, and the seam weld size of the joint connection. The results show that fracture behavior can affect the failure mode and bearing capacity of the joints, and it cannot be ignored in the hysteresis analysis process. The energy consumption capacity and the ductility coefficients increase when β increases from 0.2 to 1.0, τ increases from 0.3 to 1.0 and 2 γ decreases from 40 to 20. Meanwhile, joints’ failure modes and residual strength vary with the above parameters. It is necessary to use the damage fracture constitutive model of steel in numerical simulation.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241276056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241276056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

高强度钢(HSS)焊接接头的性能对管状结构设计至关重要。本文研究了考虑断裂行为的 HSS 方形空心截面 (SHS) T 型接头的滞后性能。本文对高速钢 SHS T 型接头进行了滞后和拉伸试验,并对失效模式和承载能力进行了比较分析。基于已验证的有限元模型进行了参数分析,该模型考虑了断裂和弹塑性构成关系,涵盖的参数范围很广,包括支撑和弦杆之间的横截面宽度比和壁厚比、弦杆的宽厚比以及接头连接的接缝焊缝尺寸。结果表明,断裂行为会影响连接的失效模式和承载能力,在滞后分析过程中不可忽视。当 β 从 0.2 增加到 1.0,τ 从 0.3 增加到 1.0,2 γ 从 40 减小到 20 时,能量消耗能力和延性系数都会增加。同时,接头的破坏模式和残余强度随上述参数的变化而变化。有必要在数值模拟中使用钢的损伤断裂构成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hysteretic performance of high-strength steel square hollow section T joints considering fracture behavior
The performance of high-strength steel (HSS) welding joints is crucial for tubular structure design. This paper investigates the hysteretic performance of HSS square hollow section (SHS) T joints considering fracture behaviors. The hysteresis and tensile tests of the HSS SHS T joints and a comparative analysis of failure modes and bearing capacity are conducted. Parameter analysis is conducted based on the validated FE model considering fracture and elastoplastic constitutive relationship with a wide range of parameters covered, including the cross-sectional width ratio and the wall thickness ratio between brace and chord, and the width-thickness ratio of the chord, and the seam weld size of the joint connection. The results show that fracture behavior can affect the failure mode and bearing capacity of the joints, and it cannot be ignored in the hysteresis analysis process. The energy consumption capacity and the ductility coefficients increase when β increases from 0.2 to 1.0, τ increases from 0.3 to 1.0 and 2 γ decreases from 40 to 20. Meanwhile, joints’ failure modes and residual strength vary with the above parameters. It is necessary to use the damage fracture constitutive model of steel in numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信