具有无限记忆型控制的 Korteweg-de Vries-Burgers 方程的边界稳定及其应用:定性与数值分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Boumediène Chentouf, Aissa Guesmia, Mauricio Sepúlveda Cortés, Rodrigo Véjar Asem
{"title":"具有无限记忆型控制的 Korteweg-de Vries-Burgers 方程的边界稳定及其应用:定性与数值分析","authors":"Boumediène Chentouf,&nbsp;Aissa Guesmia,&nbsp;Mauricio Sepúlveda Cortés,&nbsp;Rodrigo Véjar Asem","doi":"10.1007/s00245-024-10172-z","DOIUrl":null,"url":null,"abstract":"<div><p>This article is intended to present a qualitative and numerical analysis of well-posedness and boundary stabilization problems of the well-known Korteweg-de Vries-Burgers equation. Assuming that the boundary control is of memory type, the history approach is adopted in order to deal with the memory term. Under sufficient conditions on the physical parameters of the system and the memory kernel of the control, the system is shown to be well-posed by combining the semigroups approach of linear operators and the fixed point theory. Then, energy decay estimates are provided by applying the multiplier method. An application to the Kuramoto-Sivashinsky equation will be also given. Lastly, we present a numerical analysis based on a finite difference method and provide numerical examples illustrating our theoretical results.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary Stabilization of the Korteweg-de Vries-Burgers Equation with an Infinite Memory-Type Control and Applications: A Qualitative and Numerical Analysis\",\"authors\":\"Boumediène Chentouf,&nbsp;Aissa Guesmia,&nbsp;Mauricio Sepúlveda Cortés,&nbsp;Rodrigo Véjar Asem\",\"doi\":\"10.1007/s00245-024-10172-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article is intended to present a qualitative and numerical analysis of well-posedness and boundary stabilization problems of the well-known Korteweg-de Vries-Burgers equation. Assuming that the boundary control is of memory type, the history approach is adopted in order to deal with the memory term. Under sufficient conditions on the physical parameters of the system and the memory kernel of the control, the system is shown to be well-posed by combining the semigroups approach of linear operators and the fixed point theory. Then, energy decay estimates are provided by applying the multiplier method. An application to the Kuramoto-Sivashinsky equation will be also given. Lastly, we present a numerical analysis based on a finite difference method and provide numerical examples illustrating our theoretical results.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10172-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10172-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在对著名的 Korteweg-de Vries-Burgers 方程的好拟性和边界稳定问题进行定性和数值分析。假设边界控制是记忆类型的,则采用历史方法来处理记忆项。在系统物理参数和控制记忆核的充分条件下,通过结合线性算子的半群方法和定点理论,证明系统可以很好地求解。然后,应用乘法器方法提供了能量衰减估计。我们还将给出 Kuramoto-Sivashinsky 方程的应用。最后,我们将基于有限差分法进行数值分析,并提供数值示例来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boundary Stabilization of the Korteweg-de Vries-Burgers Equation with an Infinite Memory-Type Control and Applications: A Qualitative and Numerical Analysis

Boundary Stabilization of the Korteweg-de Vries-Burgers Equation with an Infinite Memory-Type Control and Applications: A Qualitative and Numerical Analysis

This article is intended to present a qualitative and numerical analysis of well-posedness and boundary stabilization problems of the well-known Korteweg-de Vries-Burgers equation. Assuming that the boundary control is of memory type, the history approach is adopted in order to deal with the memory term. Under sufficient conditions on the physical parameters of the system and the memory kernel of the control, the system is shown to be well-posed by combining the semigroups approach of linear operators and the fixed point theory. Then, energy decay estimates are provided by applying the multiplier method. An application to the Kuramoto-Sivashinsky equation will be also given. Lastly, we present a numerical analysis based on a finite difference method and provide numerical examples illustrating our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信