Carole Bernard, Gero Junike, Thibaut Lux, Steven Vanduffel
{"title":"模型模糊条件下的成本效益回报","authors":"Carole Bernard, Gero Junike, Thibaut Lux, Steven Vanduffel","doi":"10.1007/s00780-024-00547-z","DOIUrl":null,"url":null,"abstract":"<p>Dybvig (1988a, 1988b) solves in a complete market setting the problem of finding a payoff that is cheapest possible in reaching a given target distribution (“cost-efficient payoff”). In the presence of ambiguity, the distribution of a payoff is, however, no longer known with certainty. We study the problem of finding the cheapest possible payoff whose worst-case distribution stochastically dominates a given target distribution (“robust cost-efficient payoff”) and determine solutions under certain conditions. We study the link between “robust cost-efficiency” and the maxmin expected utility setting of Gilboa and Schmeidler (1989), as well as more generally in a possibly nonexpected robust utility setting. Specifically, we show that solutions to maxmin robust expected utility are necessarily robust cost-efficient. We illustrate our study with examples involving uncertainty both on the drift and on the volatility of the risky asset.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"7 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-efficient payoffs under model ambiguity\",\"authors\":\"Carole Bernard, Gero Junike, Thibaut Lux, Steven Vanduffel\",\"doi\":\"10.1007/s00780-024-00547-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dybvig (1988a, 1988b) solves in a complete market setting the problem of finding a payoff that is cheapest possible in reaching a given target distribution (“cost-efficient payoff”). In the presence of ambiguity, the distribution of a payoff is, however, no longer known with certainty. We study the problem of finding the cheapest possible payoff whose worst-case distribution stochastically dominates a given target distribution (“robust cost-efficient payoff”) and determine solutions under certain conditions. We study the link between “robust cost-efficiency” and the maxmin expected utility setting of Gilboa and Schmeidler (1989), as well as more generally in a possibly nonexpected robust utility setting. Specifically, we show that solutions to maxmin robust expected utility are necessarily robust cost-efficient. We illustrate our study with examples involving uncertainty both on the drift and on the volatility of the risky asset.</p>\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00780-024-00547-z\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00547-z","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Dybvig (1988a, 1988b) solves in a complete market setting the problem of finding a payoff that is cheapest possible in reaching a given target distribution (“cost-efficient payoff”). In the presence of ambiguity, the distribution of a payoff is, however, no longer known with certainty. We study the problem of finding the cheapest possible payoff whose worst-case distribution stochastically dominates a given target distribution (“robust cost-efficient payoff”) and determine solutions under certain conditions. We study the link between “robust cost-efficiency” and the maxmin expected utility setting of Gilboa and Schmeidler (1989), as well as more generally in a possibly nonexpected robust utility setting. Specifically, we show that solutions to maxmin robust expected utility are necessarily robust cost-efficient. We illustrate our study with examples involving uncertainty both on the drift and on the volatility of the risky asset.
期刊介绍:
The purpose of Finance and Stochastics is to provide a high standard publication forum for research
- in all areas of finance based on stochastic methods
- on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance.
Finance and Stochastics encompasses - but is not limited to - the following fields:
- theory and analysis of financial markets
- continuous time finance
- derivatives research
- insurance in relation to finance
- portfolio selection
- credit and market risks
- term structure models
- statistical and empirical financial studies based on advanced stochastic methods
- numerical and stochastic solution techniques for problems in finance
- intertemporal economics, uncertainty and information in relation to finance.