{"title":"环形李代数$\\mathcal{L}^{rm tor}_{r+1}(\\mathfrak{sl}_\\ell)$ 的同质实现的可积分层次结构","authors":"Chao-Zhong Wu, Yi Yang","doi":"arxiv-2408.07376","DOIUrl":null,"url":null,"abstract":"Starting from a fairly explicit homogeneous realization of the toroidal Lie\nalgebra $\\mathcal{L}^{\\rm tor}_{r+1}(\\mathfrak{sl}_\\ell)$ via lattice vertex\nalgebra, we derive an integrable hierarchy of Hirota bilinear equations.\nMoreover, we represent this hierarchy in the form of Lax equations, and show\nthat it is an extension of a certain reduction of the $\\ell$-component KP\nhierarchy.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable hierarchy for homogeneous realization of toroidal Lie algebra $\\\\mathcal{L}^{\\\\rm tor}_{r+1}(\\\\mathfrak{sl}_\\\\ell)$\",\"authors\":\"Chao-Zhong Wu, Yi Yang\",\"doi\":\"arxiv-2408.07376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from a fairly explicit homogeneous realization of the toroidal Lie\\nalgebra $\\\\mathcal{L}^{\\\\rm tor}_{r+1}(\\\\mathfrak{sl}_\\\\ell)$ via lattice vertex\\nalgebra, we derive an integrable hierarchy of Hirota bilinear equations.\\nMoreover, we represent this hierarchy in the form of Lax equations, and show\\nthat it is an extension of a certain reduction of the $\\\\ell$-component KP\\nhierarchy.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrable hierarchy for homogeneous realization of toroidal Lie algebra $\mathcal{L}^{\rm tor}_{r+1}(\mathfrak{sl}_\ell)$
Starting from a fairly explicit homogeneous realization of the toroidal Lie
algebra $\mathcal{L}^{\rm tor}_{r+1}(\mathfrak{sl}_\ell)$ via lattice vertex
algebra, we derive an integrable hierarchy of Hirota bilinear equations.
Moreover, we represent this hierarchy in the form of Lax equations, and show
that it is an extension of a certain reduction of the $\ell$-component KP
hierarchy.