环形李代数$\mathcal{L}^{rm tor}_{r+1}(\mathfrak{sl}_\ell)$ 的同质实现的可积分层次结构

Chao-Zhong Wu, Yi Yang
{"title":"环形李代数$\\mathcal{L}^{rm tor}_{r+1}(\\mathfrak{sl}_\\ell)$ 的同质实现的可积分层次结构","authors":"Chao-Zhong Wu, Yi Yang","doi":"arxiv-2408.07376","DOIUrl":null,"url":null,"abstract":"Starting from a fairly explicit homogeneous realization of the toroidal Lie\nalgebra $\\mathcal{L}^{\\rm tor}_{r+1}(\\mathfrak{sl}_\\ell)$ via lattice vertex\nalgebra, we derive an integrable hierarchy of Hirota bilinear equations.\nMoreover, we represent this hierarchy in the form of Lax equations, and show\nthat it is an extension of a certain reduction of the $\\ell$-component KP\nhierarchy.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable hierarchy for homogeneous realization of toroidal Lie algebra $\\\\mathcal{L}^{\\\\rm tor}_{r+1}(\\\\mathfrak{sl}_\\\\ell)$\",\"authors\":\"Chao-Zhong Wu, Yi Yang\",\"doi\":\"arxiv-2408.07376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from a fairly explicit homogeneous realization of the toroidal Lie\\nalgebra $\\\\mathcal{L}^{\\\\rm tor}_{r+1}(\\\\mathfrak{sl}_\\\\ell)$ via lattice vertex\\nalgebra, we derive an integrable hierarchy of Hirota bilinear equations.\\nMoreover, we represent this hierarchy in the form of Lax equations, and show\\nthat it is an extension of a certain reduction of the $\\\\ell$-component KP\\nhierarchy.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从环形李代数 $\mathcal{L}^{rm tor}_{r+1}(\mathfrak{sl}_\ell)$ 通过晶格顶点代数的相当明确的同质实现出发,我们推导出了广塔双线性方程的可积分层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable hierarchy for homogeneous realization of toroidal Lie algebra $\mathcal{L}^{\rm tor}_{r+1}(\mathfrak{sl}_\ell)$
Starting from a fairly explicit homogeneous realization of the toroidal Lie algebra $\mathcal{L}^{\rm tor}_{r+1}(\mathfrak{sl}_\ell)$ via lattice vertex algebra, we derive an integrable hierarchy of Hirota bilinear equations. Moreover, we represent this hierarchy in the form of Lax equations, and show that it is an extension of a certain reduction of the $\ell$-component KP hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信